Shape-Partitions: New Elements, New Artworks
James Mai

Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture
Pages 171–178
Regular Papers

Abstract

The development of shape-partitions is explained as graphic adaptations of integer partitions, producing forms that the author incorporates in artworks. Shape-partitions expand the possibilities of integer partitions by producing multiple graphic appearances for single integer partitions. The complete sets of shape-partitions for a triangle containing 6 points and a rhombus containing 9 points are described, categorized, and illustrated. Artworks utilizing these shape-partitions are reproduced, accompanied by discussion of the color and composition strategies used to foster a fundamentally visual apprehension of mathematical order.

Files