Brunnian Weavings

Douglas G. Burkholder
Proceedings of Bridges 2010: Mathematics, Music, Art, Architecture, Culture (2010)
Pages 263–270 Regular Papers

Abstract

In this paper, we weave Borromean Rings to create interesting objects with large crossing number while retaining the characteristic property of the Borromean Rings. Borromean Rings are interesting because they consist of three rings linked together and yet when any single ring is removed the other two rings become unlinked. The first weaving applies an iterative self-similar technique to produce an artistically interesting weaving of three rings into a fractal pattern. The second weaving uses an iterative Peano Curve technique to produce a tight weaving over the surface of a sphere. The third weaving produces a tight weaving of four rings over the surface of a torus. All three weavings can produce links with an arbitrarily large crossing number. The first two procedures produce Brunnian Links which are links that retain the characteristic property of the Borromean Rings. The third produces a link that retains some of the characteristics Borromean Rings when perceived from the surface of a torus.

Files