Controlled Overlaps of Ammann Grid Based Quasi-Cells Q

Supplement to the Bridges 2024 paper

"Ammann Grid and Knot Structure of a Quasiperiodic Girih Pattern"

Uli Gaenshirt

Admissible and Forbidden Transformations

The quasiperiodic succession algorithm is a growth rule that combines the local effectiveness of the quasiperiodic matching and covering rules with the creation of an error-free arrangement as generated by the substitution rule. The basic building blocks of the algorithm are the quasi-cells Q, which play an important role in the paper to which this supplement refers. While the paper focuses on studying the relationships between the quasi-cells and the Girih pattern, this supplement gives a small insight into the control mechanism of the quasi-cells, using only one example of transformation. The two Figures in this supplement are labeled with capital letters to distinguish them from the numbered Figures in the paper.

Figure A: (a) Cartwheel C_1 with R_0 . (b) Rhombus arrangement only permitted under the matching rules. (c) Rhombus $h_2(h_1(Q_0) \text{ corresponding to the Ammann grid generated by the succession algorithm.$

Each thick Penrose rhombus R in Figure A has an equivalence relation to a quasi-cell Q (see Figure 5(a)). For clarity, only rhombs are used in this section. Figure A(a) shows an arrangement of five thick rhombs R with yellow orientation arrows and two ochre skinny rhombs R_s . The arrangement is the same as in the cartwheel C_1 in Figure 3(b), but upside down. The central aquamarine rhombus R_0 is the start rhombus of the succession algorithm. The green rhombus is created by the transformation $h_1(R_0)$. Consequently, the light red rhombus in Figure A(b) is labeled $h_1(h_1(R_0))$. This rhombus is a valid selection according to the matching rules, but it is not allowed by the succession algorithm due to the position of R_0 . The algorithm requires the rhombus $h_2(h_1(R_0))$ from Figure A(c)), which matches the cartwheel C_2 (see Figure 3(c)).

The right side of Figure A(c) shows an Ammann grid generated by the succession algorithm. Outside the darkly emphasized Q_0 decagon, there is an L_q bar at each of its edges. The continued sequences of L_q and S_q bars are identical in all ten orientations. They can be calculated one after the other by transferring and converting suitable values. The locally acting quasi-cells Q work on the same basis.

Controlled Overlaps of Quasi-Cells Q by the Example of the Transformation $h_1(Q)$

The five twin-scales I of a quasi-cell Q are enclosed in the decagonal boundary of Q. Inside Q, only the elementary trapezoid T_{el} is a quasi unit-cell. The three grey areas outside T_{el} are variable, as they each contain an undefined red Ammann line (parallel dashed lines indicate the alternative positions). Figure B(a) shows the overlap of a cell Q by a transformed cell $h_1(Q)$, where Q refers to the predecessor cell Q_{pred} and $h_1(Q)$ to the successor cell Q_{succ} . The transformation h_1 corresponds to a rotation of the rhombus R around its top point T by 72 degrees counterclockwise (the transformed rhombus is referred to R' in this Figure). This covering defines the variable area on the right side of Q as an SL flip type.

The vertical yellow sliding ruler L_{av} in the enlarged detail in Figure B(b) synchronizes the two single scales of the twin-scale I_a . Its length (3L+S) is the average length of the intervals L_q and S_q (see Figure 3(a) and 3(e)) in a quasiperiodic L_q - S_q sequence that approaches infinity. The value transfer of a twin-scale I, which belongs to a quasi-cell Q_{pred} , onto a parallel twin-scale I of an overlapping quasi-cell Q_{succ} takes place perpendicular to L_{av} . The transfer of the values of the vertical red twin-scale I_a to the vertical green twin-scale I_d is shown by the horizontal yellow correlation arrows.

Figure B: (a) Transformation $h_1(Q)$. (b) Detail of $h_1(Q)$ with value conditions and h_1 equation set.

The scale value of the vertical twin-scale I_a , which is defined by L_{av} in Figure B(b), is an infinitesimal small value μ_0 , i.e. the correlation arrows are very close to the (forbidden) values **0**, which lie on the red Ammann lines directly below the yellow arrows. Figure A(a) shows that the five start values μ_0 of a start cell Q_0 can be transferred to the green twin-scales I of the cell $h_1(Q_0)$. The yellow arrow next to the right border of the yellow correlation area in Figure B(b) shows the transfer of the value μ_0 from d_{pred} to b_{succ} . The equation set confirms that the cell $h_1(Q_0)$ is an admissible cell of the succession algorithm.

In the previous section, it was asserted that the cell $h_1(h_1(Q_0))$ must be forbidden by the succession algorithm. The correctness of this statement can also be checked with the five h_1 correlation equations by denoting the successor values of $h_1(Q_0)$ as the predecessor values of the transformation $h_1(h_1(Q_0))$.

The value d_{pred}	of $h_1(h_1(Q_0))$	is calculated as:	$\mathbf{d}_{pred} = 1 - \mu_0$	(= successor value of $h_1(Q_0)$)
The value b_{succ}	of $h_1(h_1(Q_0))$	is calculated as:	$\mathbf{b}_{succ} = \mathbf{\tau}^{-1} - \mathbf{d}_{pred}$	i.e.: $b_{succ} = \tau^{-1} - (1 - \mu_0)$

Thus, b_{succ} of $h_1(h_1(Q_0))$ is a negative value which contradicts the scale value condition $0 < b^{def} < \tau^{-1}$ in Figure B(b) above. Consequently, the transformation $h_1(h_1(Q_0))$ is forbidden by the succession algorithm! In this case, the alternative transformation $h_2(h_1(Q_0))$ leads to an admissible cell with five valid values.