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Abstract
The patterns of closed or open shapes produced by interleaving horizontal and vertical dashed lines, some of which
are offset by a half period, are the fundamental designs behind the art of hitomezashi, the “one-stitch” style of the
sashiko embroidery technique. These same patterns also appear in the AA Weaving technique developed by Ahmed.
An “enclave” in a division of a finite canvas is a region which is wholly enclosed by other regions. The order or depth
of an enclave is the number of regions one must pass through to reach the edge of the canvas. Some hitomezashi
patterns possess very deep enclaves, but in general, the maximum depth of an enclave, even in fractal or random
designs, is sharply limited.

Formalization of Hitomezashi

Hitomezashi is a form of embroidery done with a sequence of horizontal and vertical running stitches on
a canvas. A running stitch progresses a certain length, which we might call a unit, on the top of the work,
passes through the fabric, and then progresses a single unit on the bottom of the work, passes through the
fabric, and then repeats. The appearance of a running stitch, from either side of the work, is of a dashed line,
with equal amounts of dash and blank space. If several horizontal stitches are placed with a distance of a
unit between them, and likewise several vertical stitches, the thread will form a grid, but if the stitches are
running stitches as described here, exactly half of the grid will be visible from each side of the work. There
are two different potential ways each stitch could be worked: starting on the top of the work, or starting on the
bottom. The vertical and horizontal stitches can thus be fully characterized by a pair of bitstrings, in which
we might conventionally regard a 1 as a stitch whose beginning is visible, and 0 as a stitch whose beginning
is invisible, and read the instructions for horizontal stitches top-to-bottom, and vertical stitches left-to-right.
These conventions are illustrated in Figure 1a, with the series of stitches corresponding to a horizontal-stitch
bitstring 1100100 and a vertical-stitch bitstring 0100010100.

Several mathematical works have specifically considered the patterns achievable by hitomezashi, as well
as the characteristics of traditional hitomezashi designs [2, 3, 5]. The regions described by hitomezashi
are additionally realizable through a crafting process developed by Ahmed called AA Weaving [1]. Further
mathematical works have considered the same pattern of gridlines as the result of a process described as
“corner percolation”, “site percolation”, or “two-dimensional percolation” [4].
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(a) Hitomezashi described by the bitstrings 1100100
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(b) The “AA bitmap” resulting from 2-coloring
regions

Figure 1: Hitomezashi designs and corresponding AA weaving patterns
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(a) Yamagata, with enclave depth zero at any size
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(b) Pattern with a maximum enclave depth

Figure 2: Patterns of minimum and maximum enclave depth

Enclaves in Hitomezashi
The AA weaving patterns described above differ from many of the other investigations by considering the
way in which the gridlines subdivide the canvas into regions. The techniques of AA weaving produce not the
gridlines of the embroidery, but the regions enclosed by the stitches, in alternating colors, as can be seen in
Figure 1b. Notably, in this small example, there is only a single closed loop, visible, near the bottom center
of the work. In larger works, however, it is common not only for sequences of incident stitches to form loops,
but even for loops to be within loops. To explore this phenomenon, we shall consider the concept of enclave
order.

Definition 1. A region bounded by hitomezashi stitches which is not a closed loop is called an order-zero
enclave; any region which is a closed loop is identified as a order-(𝑛 + 1) enclave, where 𝑛 is the lowest
enclave order of an adjacent region.

This terminology derives from political geography, in which a “second-order enclave” is a region
belonging to one nation, surrounded by an entirely-enclosed enclave of another nation; an alternative definition
for the order of an enclave is the number of stitches it is necessary to cross in order to reach the outside of the
work. The enclave depth of a pattern is the maximum order of an enclave in the pattern.

By construction, it is easy to show that patterns of arbitrary size with zero enclave depth are possible,
including the patterns Seaton and Hayes[5] identify as dan tsunagi, hirayama michi, and yamagata; an example
of the yamagata form is exhibited in Figure 2a. It is also easy to construct patterns whose enclave depth is
a quarter of the length of the shorter of the two bitstrings used to generate the pattern; Seaton and Hayes
identify this as dual to a variant of the yamagata pattern, and an example is shown in Figure 2b. The enclave
depth exhibited by this pattern is in fact the largest possible.

Proposition 1. A hitomezashi pattern determined by length 𝑚 and 𝑛 bitmaps for 𝑚 ≤ 𝑛 has an enclave depth
of at most 𝑚+3

4 .

Proof. We will start by demonstrating that if a hitomezashi pattern is coordinatized with the upper left corner
at (0, 0), there is a path from the point (𝑥0 + 1

2 , 𝑦0 + 1
2 ) to an edge of the work which passes through at most

𝑦0
2 + 1 stitches. If 𝑥0 = 0, then we can obviously reach the left edge in a single step, crossing at most one

stitch. Otherwise, let us consider two paths: a straight segment from (𝑥0 + 1
2 , 𝑦0 + 1

2 ) to (𝑥0 + 1
2 ,−

1
2 ), and a

path consisting of two segments from (𝑥0 + 1
2 , 𝑦0 + 1

2 ) to (𝑥0 − 1
2 , 𝑦0 + 1

2 ) and then on to (𝑥0 − 1
2 ,−

1
2 ). In total,

these two paths will cross at most 𝑦0 + 2 segments: exactly one of these two paths will cross a horizontal
stitch at each of horizontal lines 𝑦 = 0, 𝑦 = 1, . . . , 𝑦 = 𝑦0, since for each 𝑦, exactly one of the two segments
(𝑥0 − 1, 𝑦) to (𝑥0, 𝑦) or (𝑥0, 𝑦) to (𝑥0 + 1, 𝑦) is present, and it is also possible that the second path crosses the
vertical stitch from (𝑥0, 𝑦0) to (𝑥0, 𝑦0 + 1). Since these two paths collectively cross 𝑦0 + 2 stitches, one of the
paths crosses no more than 𝑦0+2

2 stitches.
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(a) Fibonacci Snowflake generated
by the Pell word 𝑢6𝑢6

(b) Pattern generated by 128 bits of
the Thuy-Morse sequence

(c) Pattern generated by 234 terms
of the Kolakoski sequence

Figure 3: Self-similar hitomezashi designs, with color-coded enclave depth

Returning to the question of enclave depth on a whole pattern, by applying this same theorem to four
rotations of a finite canvas, it is clearly possible to reach the outer edge of a (𝑚 − 1) × (𝑛 − 1) canvas from
a point (𝑥0 + 1

2 , 𝑦0 + 1
2 ) via a path crossing no more than the minimum of 𝑥0+2

2 , 𝑦0+2
2 , 𝑚−1−𝑥0−2

2 , 𝑛−1−𝑥0−2
2

stitches. This quantity is maximized by when 𝑥0 = ⌊𝑚−1
2 ⌋ and 𝑦0 = ⌊ 𝑛−1

2 ⌋, which gives a maximum upper
bound on the enclave order of 𝑚+3

4 . □

Enclave Depth in Self-similar and Random Patterns
Many of the traditional patterns Seaton and Hayes identify have constant enclave depth regardless of work
size; the yamagata variant shown in Figure 2b is an exception in that regard. However, nontraditional patterns
exhibiting self-similarity can be produced by generating the defining bitstrings for a hitomezashi design
using a recursive procedure. Seaton and Hayes define one such pattern based on a recursively-defined binary
sequence called a Pell word, with the generative rule:

𝑢0 is the empty string, 𝑢1 = 1, 𝑢𝑛 = 𝑢𝑛−1�𝑢𝑛−2𝑢𝑛−1 for 𝑛 ≥ 2

where 𝑥 is the binary complement of the bitstring 𝑥, and �̃� is the reversal of 𝑥. Using 𝑢𝑛𝑢𝑛 as both binary
codes for a hitomezashi pattern creates “Fibonacci snowflakes” whose complexity increases with 𝑛. Enclave
depth in the Fibonacci snowflake appears to increase so that the order-𝑛 snowflake has enclave depth 𝑛+1

2 .
The order-6 snowflake has enclave depth 3, which can be visualized in Figure 3a.

There are other notable recursively defined bitsequences which can produce other self-similar hitomeza-
shi patterns, including the Thuy-Morse sequence and the Kolakoski sequence. Hitomazashi patterns for these
two can be seen in Figures 3b and 3c. The Thuy-Morse sequence never appears to produce a pattern with an
enclave depth greater than 2, while the Kolakoski sequence exhibits a roughly logarithmic enclave depth: 3
terms are enough to induce depth 1, 11 for depth 2, 44 for depth 3, 89 for depth 4, and 234 for depth 5.

In addition to self-similar patterns, one way to step outside of traditional design sensibilities is with
randomness. The most natural way to do so is by selecting the defining bitstrings for a design entirely at
random. The enclave depth of a design given by two random bitstrings of lengths 𝑚 ≤ 𝑛 will be a random
variable, with nonzero probabilities of each value from 0 to ⌊𝑚+3

4 ⌋. For very small values of 𝑚 and 𝑛, the
complete probability distribution can be determined; for larger values, since there are 2𝑚+𝑛 different bitstring
pairs possible, exhaustively testing all bitstrings becomes prohibitively computationally intensive.

The enclave depths resulting from a large number of tests of random bitstring pairs of various sizes
appear in Table 1. A clear conclusion to reach from this table is that the larger dimension of a random pattern
has almost no effect on the distribution of enclave depth: 20 × 20 patterns have very nearly the same depth
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Table 1: Enclave-depth probability distribution of random bitstrings

𝑚 𝑛 # trials Mean 0 1 2 3 4 5 6 7
5 5 210 0.633 36.7% 63.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
5 10 215 0.851 14.9% 88.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

10 10 220 1.003 1.9% 95.8% 2.3% <0.1% 0.0% 0.0% 0.0% 0.0%
20 20 100000 1.331 <0.1% 67.4% 32.1% 0.5% 0.0% 0.0% 0.0% 0.0%
20 40 100000 1.332 0.0% 67.4% 32.2% 0.5% <0.1% 0.0% 0.0% 0.0%
20 100 100000 1.330 <0.1% 67.5% 32.0% 0.5% 0.0% 0.0% 0.0% 0.0%
20 200 100000 1.330 <0.1% 67.5% 31.9% 0.5% <0.1% 0.0% 0.0% 0.0%
40 40 100000 2.076 0.0% 9.4% 74.6% 15.3% 0.8% <0.1% 0.0% 0.0%

100 100 100000 3.380 0.0% <0.1% 10.2% 51.2% 30.4% 7.0% 1.1% 0.1%

distribution as 20 × 200 patterns. It also appears to be the case that enclave depth tends to increase with
smaller-dimension size, a result which can be quantified.

Theorem 1. For positive integers 𝑚 ≤ 𝑛 and 𝑘 , the probability that a hitomezashi pattern generated by
length 𝑚 and 𝑛 uniformly random bitstrings has enclave depth of 𝑘 or more is at least

(
1 − (1 − 2−2𝑘) ⌊𝑚/𝑘 ⌋ )2.

Proof. Generalizing the dual-yamagata pattern in Figure 2b, it is clear that if the sequence (01)𝑘−100(10)𝑘−1

appears starting at an odd index in both bitstrings (with the first index being 0), then the resulting hitomezashi
pattern has an enclave of order 𝑘 . The probability of that particular pattern occurring at a specific index of a
bitstring is 2−2𝑘 ; the probability that it occurs at position 1, 1 + 2𝑘 , 1 + 4𝑘 , . . . , or 1 + 2(𝑥 − 1)𝑘 of a bitstring
of length at least 𝑥𝑘 is 1− (1− 2−2𝑘)𝑥 , since each of these events is independent. Thus, there is a probability
of at least 1 − (1 − 2−2𝑘) ⌊𝑚/𝑘 ⌋ that a random bitstring of length 𝑚 contains this sequence starting at an odd
index, and likewise probability 1 − (1 − 2−2𝑘) ⌊𝑛/𝑘 ⌋ for a bitstring of length 𝑛, and so there is a probability
of at least

(
1 − (1 − 2−2𝑘) ⌊𝑚/𝑘 ⌋ ) (1 − (1 − 2−2𝑘) ⌊𝑛/𝑘 ⌋

)
≤

(
1 − (1 − 2−2𝑘) ⌊𝑚/𝑘 ⌋ )2 that both bitstrings contain

this sequence starting at an odd index, which ensures an enclave of order 𝑘 . □

This bound is quite sloppy, using individual independent blocks to make the calculation easier when the
actual probability of the target subsequence is surely much higher. Nonetheless, this result suffices to show
that, for any specific 𝑘 , enclave depth exceeding 𝑘 almost always occurs as 𝑚 and 𝑛 increase without bound.
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