
Arcs on Spheres and Snakes on Planes

David Swart

Waterloo, Ontario, Canada; dmswart1@gmail.com

Abstract
An existing method to map points from the sphere to the plane uses a turtle language to specify a ‘skeleton’ which
is then used to create artistic map projections. We augment this method by adding a new turtle command to draw
non-great-circle arcs. We discuss some technical details and show some early artistic explorations.

Introduction

In 2009, I wrote about some software that enables a user to explore ways to mathematically unwrap spherical
imagery to the plane as a projection [4]. The input to the software is a set of turtle commands to move,
rotate and draw lines on both surfaces. Two turtles, one on the sphere and one on the plane, draw a set of
corresponding segments. The Voronoi regions on the sphere (the set of points that are closest to each drawn
segment) are then mapped to their corresponding line segments on the plane. See Figure 1. For the user’s
convenience, angles are specified such that one unit is 180° (𝜋 radians). For example, [r 0.5] is a 90° turn
to the left.

Figure 1: Turtle commands define lines on both a sphere and on a plane which is then used to map content
from the sphere to the plane.

Since then, I have continued to explore the artistic potential of this tool, mapping spherical imagery such
as panoramas and the globe into projections that I find interesting and pleasing. In 2021, I added the ability
to automatically tweak a turtle program to find a way to unwrap the sphere into a target shape [5]. This paper
describes a further addition to this software, namely the ability to instruct the turtles to draw arcs. To be
specific, any arcs not just ones which lie along great circles.

The next section is a quick review of conic projections; next, we discuss some technical details about
the new arc instruction; finally, we follow with some artistic explorations and possible future projects.

Conic Projections

The new capability of our software is the ability to map portions of the sphere by using a conic projection.
There are many good resources that cover the topic including one by Snyder [3], however, we can outline
some basic points here.

Bridges 2024 Conference Proceedings

353



Conic projections can be thought of as mapping points on a sphere to a cone first, and then unwrapping
this cone onto a plane. As a result, the lines of latitude (parallels) will get mapped to concentric circles and
the lines of longitude (meridians) are mapped to equally spaced rays, radially oriented line segments. There
are three notable types of conic projections distinguished by the spacing between the parallels.

The Albers conic projection has parallels spaced out so that the resulting map preserves area. The
Lambert conic conformal preserves angles resulting in a conformal map where local shapes look nice. In
fact, Statistics Canada sets this projection as the official projection for maps and does a good job keeping the
shape of Canada from looking overly distorted. For our purposes, we are most interested in the equidistant
conic projection (described by Ptolemy in 150 AD!) which preserves distances along the meridians and along
one or two standard parallels.

Arcs on Spheres

A natural way to specify an arc with a turtle language is with the command [a 𝜃 𝑟] where 𝜃 is the sweep
angle and 𝑟 is the arc’s radius. However, having two turtles on two different surfaces, we wish to keep the
geodesic curvature of each arc the same. That is, each turtle will impart the same amount of local curvature
as it draws. To keep geodesic curvature the same, we need different 𝜃 and 𝑟 values for the plane than for the
sphere. So for our program, we will ask the sphere turtle to use the given values (𝜃𝑆 and 𝑟𝑆) and the planar
turtle will use values 𝜃𝑃 = 𝜃𝑆 × cos(𝑟𝑆) and 𝑟𝑃 = tan(𝑟𝑆) according to properties of an equidistant conic
projection with a standard parallel equal to the sphere arc.

Once our corresponding arcs are specified, our software can now map points by copying the specific
distance and angle to the closest point of an arc on one surface and then using these values to calculate the
corresponding point on the other. See Figure 2.

Figure 2: Points on the sphere (red) are mapped according to their relative position to the nearest arc
(blue).

It is worth taking a moment for a technical description of the resulting projections of our software. Our
turtle method maps Voronoi regions piece by piece. If points on the sphere are in the region closest to a
line segment then the region is mapped with an equirectangular projection. If the region is closest to a line
segments’ end point then it is mapped with an azimuthal equidistant projection. And now, regions closest to
an arc are mapped with an equidistant conic projection. Thus, taken altogether, the projections we produce
can be thought of as a piecewise mix of these three.

Our implementation is written in JavaScript and can be run in a web browser. Readers are encouraged to
try this code out for themselves. The source code and instructions for downloading and running the software
are on GitHub [2].

Swart

354



Explorations

Jellybeans. The first attempts I tried were turtle instructions consisting of just one arc [a 1 𝑥]. A sweep
of 1 (180°) on the sphere and a radius of 𝑥 ranging from 0 to 0.5. Figure 3 shows the results using a map
of the world as the source spherical imagery. Right away I found their shapes simple and appealing. Also
notice how a radius of 0 is equivalent to just a point [l 0] and a radius of 0.5 results in a “line” equivalent
to [l 1].

Figure 3: Jelly beans

Wiggles. Next, I thought about a series of 180° arcs going above and below the equator returning to the start.
We can define each of 𝑛 arcs that circle the globe as [a 1 ±1/𝑛]. The radius here alternates positive and
negative indicating the center of the arc alternating on the left and right side. Figure 4 shows four of these
projections using a 2017 panorama of my backyard hand drawn by me and inked by Michael Swart.

Figure 4: A sphere with six 180° arcs oscillating above and below the equator followed by the projections
resulting from 3, 4, 5, and 6 arcs.

Sphericons. I have long been inspired by the variety and imagination of the output projections available in
Lloyd Burchill’s Flexify 2 Photoshop plugin [1] which is where I first learned of sphericons. Imagine the
solid of revolution of a regular polygon. Then slice this shape into two equal halves with a plane containing
the axis of revolution, and put them back together, rotating the cross section onto itself. The resulting shape
has a surface which is well suited for construction using our new software. As an example, consider the
solid of revolution of an octagon cut in half and rotated by 45°. The path along this surface is visited by
eight spherical arcs which we can enter into our software as: [a 1 0.125 a 1 0.375 a 1 -0.375 a 1
-0.125 a 1 0.125 a 1 0.375 a 1 -0.375 a 1 -0.125]. We see the result shown in Figure 5.
Snakes. The unrolled sphericon projection looks like a snake. Pushing this example further, I wanted to
create a more intricate, meandering, space filling path on the sphere and look at the resulting projections. To
get this curve, we use the Repulsive Curves technique from Yu et al. [6] and approximate these meandering
paths with our arcs. The implementation details would not fit in this paper, but readers can find the code in
GitHub [2] and try it out for themselves. I have created several of these snakes. See Figure 6. I am personally
very pleased with them. I especially like their graffiti-like quality.

Arcs on Spheres and Snakes on Planes

355



Figure 5: A sphericon constructed with eight arcs on the sphere.

Figure 6: Snakes on a plane.

Future work

This will not be the end of my explorations of arcs on spheres. I hope to further explore the idea of having a
space filling repulsive-curve-like path on the plane corresponding to a space filling curve on the sphere that
intersects itself. My intent is to construct a woven sphere from a strip of paper efficiently cut out of a finite
rectangular piece of paper. This new ability to trace curved paths with arcs will be a valuable tool to help
me achieve this. From an artistic point of view I have also begun work on a woodcut print of a snake-like
projection drawn in the shape of a dragon. The results are pending and not yet available at the time of writing.

References

[1] L. Burchill. Flexify output modes - Flaming Pear Software.
http://www.flamingpear.com/flexify-output-modes.html.

[2] GitHub. dmswart/Personal-Projects. http://github.com/dmswart/Personal-Projects.
[3] J. P. Snyder. Flattening the Earth: Two Thousand Years of Map Projections, 4th ed.Chicago Press, 1997.
[4] D. Swart. “Using Turtles and Skeletons to Display the Viewable Sphere.” Proceedings of Bridges 2009:

Mathematics, Music, Art, Architecture, Culture. C. S. Kaplan and R. Sarhangi, Eds. London: Tarquin
Publications, 2009. pp. 39–46. http://archive.bridgesmathart.org/2009/bridges2009-39.html.

[5] D. Swart. “Orange Peel Optimization.” Proceedings of Bridges 2021: Mathematics, Art, Music,
Architecture, Culture. D. Swart, F. Farris, and E. Torrence, Eds. Phoenix, Arizona: Tessellations
Publishing, 2021. pp. 241–248. http://archive.bridgesmathart.org/2021/bridges2021-241.html.

[6] C. Yu, H. Schumacher, and K. Crane. “Repulsive Curves.” ACM Trans. Graph., vol. 40, no. 2, 2021.

Swart

356

http://www.flamingpear.com/flexify-output-modes.html
http://github.com/dmswart/Personal-Projects
http://archive.bridgesmathart.org/2009/bridges2009-39.html
http://archive.bridgesmathart.org/2021/bridges2021-241.html

