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Abstract  

In this paper, we introduce and explore a class of knots on 9×9×9 Rubik’s cubes that begin from the same edge 
permutation and follow the photogenic knot heuristics introduced in our prior work. We identify structure in the 
composition of the knots, specifically the possible combinations of thread crossings on a face, and develop a 
labeling system to help name a knot around the entire cube. However, this introduces multiple possible labels for 
the same knot, up to rotation of the cube. So, we then identify a method that leverages group actions to generate 
equivalence classes for knots (distinct orbits under the group action). We then identify 224 distinct orbits, which 
demonstrates that there are 224 distinct knots. 

 
Introduction 

This work continues the first author’s “Photogenic Knots on n×n×n Rubik’s cubes” work in which we use 
traditional puzzle moves to embed mathematical knots on Rubik’s cubes. The Rubik’s cubes you see in this 
paper can be viewed as alternate solution states of the cube. That is, it is possible to re-configure the cube 
from the “solved” state (all faces a solid color) to states depicting knots without dis-assembling the puzzle. 
Photogenic knots [2] are knot projections on pixel meshes that follow 6 heuristics (Figure 1). The class of 
knots we explore in this paper are all photogenic. Our exploration begins with a seemingly straightforward 
question that escalates to requiring substantial structure and upper-level mathematics to reason about the 
counting problem. The work in this paper is the basis for the second and third coauthors’ senior capstone 
projects in their respective bachelor’s degrees in mathematics.  
 

                                                           
(a)                                                              (b)                                                             (c) 

                                                           
(d)                                                              (e)                                                              (f) 

Figure 1: Illustrating six criteria for photogenic knots with examples and non-examples: (a) knots 
contrast with background, (b) threads turn at right angles, (c) threads maintain color on a face, (d) 

discernible over/under crossings, (e) color persists after crossings, and (f) gap-i-ness reduces confusion. 
 
This class of patterns begins with an edge permutation on the 9×9×9 Rubik’s cube (Figure 2(a) and 

2(b), next page). This permutation of the puzzle’s pieces can be reached via normal moves and leverages 
the symmetry of the cube so that each face has a solid background and eight edge pieces (four pairs) that 

Bridges 2024 Conference Proceedings

179



 

 
 

contrast with the background. The contrasting edge pieces are colors from opposite faces of the cube (either 
blue/green, red/orange, or white/yellow), and the colors alternate around the perimeter of each face. These 
edge pieces establish the thread colors on each face. Based on the photogenic knot heuristics cited above, 
threads that connect the two blue edge pieces (for instance) should consist of blue pixels that turn at right 
angles and do not cross another blue thread. Accordingly, the thread from each blue pixel should connect 
to one of the blue pixels on an adjacent edge of the face. This produces two possible pairings for the blue 
pixels (Figures 2(c) and 2(d)). Similarly, there are two possible pairings for the green pixels (Figures 2(e) 
and 2(f)). To satisfy the gap-i-ness heuristic, threads of one color should trace around the perimeter of this 
7×7 center pixel grid (Figures 2(c) and 2(d)), and the other color’s threads should trace through the middle 
3×3 grid in the center (Figures 2(e) and 2(f)). Without loss of generality, we have chosen the outer threads 
on the red, white, and blue faces to be the white, blue, and red threads, respectively. Similarly, the outer 
threads on the orange, yellow, and green faces are yellow, green, and orange, respectively.  
    

                     
(a)                       (b)                       (c)                        (d)                      (e)                       (f) 

Figure 2: (a & b) The initial edge permutation and (c – f) four possibilities for connecting edges. 
 

From this, on each face, there are two possibilities for the outer color’s threads and two for the inner 
color’s threads. The choice for each color is independent, producing four possible combinations between 
the two thread colors (Figure 3(a)). Further, the combination of thread on each of the six faces is 
independent of the pattern on every other face. Accordingly, there are 46 = 4,096 possible combinations of 
these configurations around the six faces of the cube. In this paper, we call a combination of these 
configurations around the cube a pattern. Figure 3(b) shows one possible pattern from different 
perspectives. Due to the cube’s symmetry, some of the 4,096 patterns are the same after rotation of the 
cube. This brings us to the main research question for this paper: “How many of these 4,096 patterns are 
distinct, up to rotation?” 

 

                        
(a)                                                                               (b) 

Figure 3: (a) Matrix of four possible thread combinations on a face and (b) an example of a pattern. 
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Analysis of the Patterns 
To answer our research question, we began analyzing the four possible thread combinations and realized 
that each combination bisects the face of the cube – one along each diagonal of the square face, one vertical 
bisection, and one horizontal bisection (Figure 3(a), red lines). After realizing this, we began to use the 
bisections to identify each combination of threads and devised a naming system to refer to these. It is 
necessary to identify an orientation for these bisections on each face of the cube. In our naming system, we 
orient the cube with one face up and a corner pointing toward the viewer. From this orientation, we chose 
the naming system in Figure 4 because it leverages two symmetries of the cube (discussed below). 
 

 
A                        B                         C                       D 

 
Figure 4: Identifying the bisection of a face by the four thread combinations. 

 
Given any pattern from this class, we can identify the corresponding bisections and label each bisection 

either A, B, C, or D based on the orientations identified in Figure 4. In this paper, we call a collection of 6 
bisections corresponding to a given pattern a cordon. We chose this name because the bisections act like 
boundaries on the knot threads, pushing them to one side of a face or the other, and dictating the resulting 
knot pattern. Accordingly, our research question is equivalent to counting the number of distinct cordons, 
up to rotation of the cube. From a given orientation, we name each cordon with a 6-letter word based on 
naming the bisection on each face in the following order: top (Figure 5(a), 1), front-left (2), front-right (3), 
bottom (4), back-left (5), and back-right (6). For example, Figure 5(b) shows a cordon in which the top face 
is bisected along the diagonal we named A, the front-left face along the diagonal we labeled B, and so on 
in the order shown in Figure 5(a). Accordingly, we label this cordon in this orientation “ABCDDD”. 
 

 
(a)                             (b) 

Figure 5: (a) The order for naming bisections in a cordon and (b) example of labeling a cordon. 
 

As with the original patterns, rotating the cube changes the orientations of the bisections. Because a 
cube has 24 orientations, a given cordon might have up to 24 distinct labelings, depending on the orientation 
of the cube. The example above is one such cordon that produces 24 distinct labelings when rotated. We 
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explored the different orientations of this pattern (and other patterns) and observed structures that emerged 
when rotating the cube into different orientations and notice how this affected the labeling of the cordon 
(Figure 6). We have organized the various orientations of the example pattern in Figure 6 to illustrate 
structures we identified in the results of our activity. Notably, our naming system is conducive to re-labeling 
a cordon when the orientation has the same corner in the center. This is demonstrated by the first three 
labelings in Figure 6. Because the red/white/blue corner remains in the center, these labelings use the same 
letters, rearranged in a slightly different order. The same can be said of the last three labelings. Further, the 
fourth labeling can be generated by swapping the first three letters with the last three letters. As we discuss 
below, these patterns are not coincidental, but the result of the effect that rotations have on the labels.   
 

 
Figure 6: 24 orientations of an example cordon and their labelings.  

 
 The patterns we identify in the labelings of the same cordon above are a natural consequence of how 
cube rotations interact with our naming system. Because our labels for A, B, C, and D are symmetric around 
the center corner and its opposite corner (Figure 4), rotating the cube 120° around an axis through those 
corners results in a permutation of the labels on the front half of the cube in a 3-cycle (and also a 3-cycle 
of the back labels) without changing the labels themselves. Figure 7 demonstrates the effect this rotation, 
which we call D120, has on the order in which faces are listed in the labeling. So, this rotation causes the 
second letter of the word to move to the first position, the third letter to move to the second position, and 
the first letter to move to the third position. In a similar 3-cycle, the last letter moves to the fourth position, 
the fourth letter moves to the fifth position, and the fifth letter moves to the last position. 
 

 
Figure 7: Illustrating the effect D120 has on the labeling of a cordon. 

 
 We also identified another rotation of the cube that results in a convenient permutation of the letters 
in a given labeling. Specifically, rotating the cube so that the front and back halves are swapped, and the 
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top face goes to the bottom of the cube, causes the first three letters and last three letters to switch places 
(Figure 8(a)). The third rotation of the cube that we used in our analysis of these patterns is a 90° rotation 
about a vertical axis through the center of the top face, which we call R90 (Figure 8(b)). This rotation is the 
most complicated of these three rotations because some of the names of bisections in our labeling change 
orientation according to our naming system. Specifically, the top and bottom faces each stay in the same 
position on the cube, but turn 90°, so that a label of A on either of these faces before the rotation changes 
to B and vice versa (similarly for C and D). Further, the four faces around the side of the cube move in a 4-
cycle so that the front-left face moves to the back-left, the back-left moves to the back-right, the back-right 
moves to the front-right, and the front-right moves to the front-left. To further complicate this process, two 
of these faces keep the same label and the other two change orientation (as with the top and bottom faces, 
A changes to B and vice versa or C changes to D and vice versa). We developed a shorthand for notating 
all the faces that change orientation by including an apostrophe on those items (Figure 8b). 
 

               
(a)                                                                                      (b) 

Figure 8: Illustrating the effect X180 and R90 have on the labeling of a cordon. 
 
 Together, these three rotations (D120, X180, and R90) generate the group of rotations of a cube, so we 
can use them in combination to generate all 24 orientations of the cube. Figure 9 shows the effect of all 24 
rotations on the generic labeling “123456”. The first row is generated by applying D120 to the first cube to 
create the second and again to produce the third orientation. Applying X180 to the first cube produces the 
fourth cube in the top row. Applying D120 to the fourth cube produces the fifth cube and applying D120 again 
generates the sixth cube in the top row. Applying R90 to any cube produces the cube immediately below it. 
 

 
Figure 9: The result of all 24 rotations of the cube on a generic labeling. 
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Re-Framing the Problem and Results 
Based on our cordon labeling system and our insight into how rotations of the cube affect the labelings, we 
can re-frame our research question in terms of the group of rotations of the cube acting on set of all 6-letter 
words using the alphabet {A, B, C, D}. We can consider the collection of labelings generated from rotating 
a cordon to all possible orientations. This set of labelings is called the orbit of that cordon under the group 
action. For example, Figure 6 shows the orbit of the cordon that can be labeled with ABCDDD when acted 
on by the group of rotations of a cube. This shows us that the same cordon could also be labeled with any 
of those 24 labelings. Figure 9 shows the orbit of a generic element in S under the group action. Under 
group actions, orbits form equivalence classes and are either equal or disjoint. So, if two cordons can be 
rotated to have the same labeling, then their orbits under the group action are equal. Our research question 
can then be re-phrased to, “How many distinct orbits of this group action exist?” 

Although we are aware of more advanced and/or elegant methods [1], in this project we computed the 
orbit of all 4,096 labelings using Microsoft Excel and identified which orbits were repetitions of previously 
listed orbits. We first identified the “least” labeling in each orbit – the first labeling if all labelings in that 
orbit were listed alphabetically. Because orbits are either equal or disjoint, if two orbits share any labeling, 
they have the same least labeling. We identified 224 distinct least labelings (Table 1). No two of these 
labelings are contained in the same orbit, meaning there are 224 distinct orbits under this group action. 
More pointedly, all 4,096 cordons (and, so, patterns) can be reoriented and labeled so that their labeling is 
listed in Table 1.  
 

Table 1:  Alphabetized list of 224 least labelings of distinct orbits under the group action. 
 

AAAAAA AABABC AABCDC AACBDA AACDDD AADDCD ACBCAD ACDADC 
AAAAAB AABABD AABCDD AACBDB AADAAD AADDDA ACBCCC ACDBCC 
AAAAAC AABACC AABDAB AACBDC AADACB AADDDC ACBCCD ACDBCD 
AAAAAD AABACD AABDAC AACBDD AADACC AADDDD ACBCDC ACDCCC 
AAAABB AABADC AABDAD AACCAA AADACD ABCBCA ACBCDD ACDCCD 
AAAABC AABBAA AABDBC AACCAC AADADA ABCBCC ACBDAD ACDCDC 
AAAABD AABBAB AABDBD AACCAD AADADC ABCBCD ACBDCC ACDDAC 
AAAACB AABBAC AABDCA AACCBC AADADD ABCBDA ACBDCD ACDDCC 
AAAACC AABBAD AABDCB AACCBD AADBCA ABCBDC ACBDDD ACDDCD 
AAAACD AABBCA AABDCC AACCCA AADBCB ABCBDD ACCACC ACDDDC 
AAAADB AABBCB AABDCD AACCCB AADBCC ABCCCC ACCACD ADCADC 
AAAADC AABBCC AABDDB AACCCC AADBCD ABCCCD ACCADC ADCBCC 
AAAADD AABBCD AABDDC AACCCD AADCAC ABCCDA ACCADD ADCBDC 
AAABBB AABBDA AABDDD AACCDA AADCAD ABCCDC ACCBCC ADCCCC 
AAABBC AABBDB AACAAC AACCDB AADCBC ABCCDD ACCBCD ADCCDC 
AAABBD AABBDC AACAAD AACCDC AADCCA ABCDCC ACCBDC ADCDCC 
AAABCC AABBDD AACACA AACCDD AADCCB ABCDDA ACCBDD ADCDDC 
AAABCD AABCAB AACACB AACDAA AADCCC ABCDDC ACCCAC ADDBCC 
AAABDC AABCAC AACACC AACDAC AADCCD ABCDDD ACCCCC ADDCCC 
AAABDD AABCAD AACACD AACDAD AADCDA ABDCDC ACCCCD ADDDCC 
AAACCC AABCBC AACADA AACDBD AADCDC ABDCDD ACCCDC CCCCCC 
AAACCD AABCBD AACADB AACDCA AADCDD ABDDDC ACCCDD CCCCCD 
AAACDD AABCCA AACADC AACDCB AADDAA ACBBAC ACCDAC CCCCDD 
AAADDD AABCCB AACADD AACDCC AADDAC ACBBAD ACCDCC CCCDDD 
AABAAB AABCCC AACBCA AACDCD AADDAD ACBBCC ACCDCD CCDCCD 
AABAAC AABCCD AACBCB AACDDA AADDCA ACBBCD ACCDDC CCDCDC 
AABAAD AABCDA AACBCC AACDDB AADDCB ACBBDC ACCDDD CCDDCC 
AABABA AABCDB AACBCD AACDDC AADDCC ACBBDD ACDACD CCDDCD 

 
We have colored the entries in Table 1 to indicate the number of distinct labelings in each orbit (red 

indicates orbits of size 2, orange: 4, yellow: 6, green: 8, blue: 12, and white: 24). We noticed that exactly 2 
orbits contain 2 distinct labelings, 4 orbits contain 4 distinct labelings, 18 orbits contain 6 distinct labelings, 
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4 orbits contain 8 distinct labelings, 64 orbits contain 12 distinct labelings, and 132 orbits contain 24 distinct 
labelings. We will now use two orbits to illustrate how the symmetries of the cube interact with the labelings 
to produce orbits of different sizes: the orbit with least labeling AAABBB (which contains 2 distinct 
labelings) and the orbit with least labeling CCDCCD (which contains 6 distinct labelings). 

 

 
Figure 10: The orbit of AAABBB contains exactly two distinct labelings. 

 
Early on in our work, we recognized that some of the knot patterns had several symmetries. This 

included the pattern that we now label as having the cordon AAABBB. Figure 10 shows all 24 symmetries 
of the cube with this cordon. Notice that there are exactly 2 distinct labelings throughout the entire orbit. 
This is due to the structure of the cordon, which forms a tetrahedron whose vertices are on alternating 
corners of the cube. Because of this, the cordon is incident with one half of the cube’s corners (as with 
AAABBB) or the other half of the cube’s corners (as with BBBAAA). We were drawn to this example 
because the geometric structure gives insight into how the group action creates an orbit with only two 
distinct labelings. The symmetries of the tetrahedron interact with the symmetries of the cube so that there 
are only two possible cordons. Interestingly, the knot pattern associated with this cordon is four disjoint 
trefoil knots (Figure 11).  
 

 
Figure 11: Pattern with associated labeling AAABBB from one perspective showing a Trefoil knot. 

Counting a Class of Photogenic Knots on 9×9×9 Rubik’s Cubes

185



 

 
 

 
Figure 12: The orbit of CCDCCD contains exactly six distinct labelings. 

 
The final example we identified as particularly enlightening is the cordon with least labeling 

CCDCCD. This orbit contains six distinct labelings (highlighted with rectangles in Figure 12). This cordon 
is made up of a connected band around four sides and a single line on the remaining two sides, each of 
which always has the same label. The symmetries of this cordon are dictated by the axis about which the 
band is connected (x, y, or z) and the label of the other two lines (C or D). This yields 3×2 = 6 possible 
orientations of the cordon. As before, attending to the geometric structure gives insight into the number of 
distinct labelings in this orbit. The band separates the cube into two halves, causing the resulting knot 
structure to be two disjoint links, each with 6 crossings. In our future work, we will analyze the knots that 
the 224 corresponding patterns generate and identify how many distinct knots make up this class of 
photogenic knots on the 9×9×9 Rubik’s cube. 
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