
Force Tuning Bistable Origami Triangulated Cylinders

Folding Pattern 
To make an N-gon triangulated cylinder the crease pattern 
(below) should be N segments tall with angles β = π/N and 𝛾 
ranging from 0 to π/2-β. Red and blue lines represent 
mountain and valley folds, respectively. The top and bottom 
edges are joined to form a tube, overlapping the gray area. 

Once folded, the structure can exist extended (left) or 
collapsed (right), as pictured below.
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Force Measurements 
To explore their mechanical behavior, the triangulated 
cylinders were axially compressed (red) and extended (blue). 
Data was collected for structures with different N and 𝛾. 
Below is the loading curve for two pentagonal columns, one 
with 𝛾 = π/12 (left) which exhibits snapping behavior, and 
one with 𝛾 = 5π/36 (right) whose loading curve is 
continuous.

Theory vs Experiment 
In reality, the transition from bistable to monostable 
behavior occurs at a lower 𝛾 value than the calculated 
bifurcation point. The discrepancy is due to the use of a 
purely geometric model, which does not account for spring 
forces within the paper that have a tendency to resist 
folding of the creases.
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Designing the Response 
The graph below shows snapping force as a function of Δθ 
with red corresponding to the first snap and green 
corresponding to the last snap during the compression of 
columns with constant 𝛾. Using this data, a crease pattern 
with varying 𝛾 can be reverse engineered to produce a 
desired force response. However, given that a cylinder of 
uniform 𝛾 throughout each segment results in an increasing 
force with each snap, it can only accurately produce curves 
that increase in slope. That is, it cannot produce a concave 
down response.

Presented is a preliminary study to characterize the 
mechanical behavior of origami triangulated cylinders under 
axial loading. These structures are compressed while force 
measurements are taken using a strain gauge.
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Snapping Behavior Arises from Geometry 
The stable configurations of the triangulated cylinder occur 
where there is no bending of the facets, thus the segment 
lengths and folding angles of the folded model should 
remain consistent with that of the flat crease pattern. The 
parameter θ is the rotation of one polygon relative to its

adjacent polygon (above, upper left). The graph (above, 
right) shows all the calculated values of θ for a hexagonal 
column which satisfy conditions for stability. The 
bifurcation point for N = 6 occurs at 𝛾 = π/6. All hexagonal 
columns with 𝛾 values to the right will not exhibit snapping 
behavior, while in theory, those to the left would, 
undergoing facet bending (above, bottom left) when 
transitioning between stable states. 

The above left plot shows the force magnitude of the last 
snap for columns with various values of N and 𝛾. For N = 9 
and 10 at 𝛾 = π/12, no data exists because the snapping 
force exceeded the force required to tear the paper. The 
right plot shows all the values of Δθ for columns with the 
same parameters. The zero region of the force plot is 
greater than the zero region of the Δθ plot due to the 
aforementioned unaccounted spring forces.
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Bistable Origami Antiprism Columns with Tunable Force Curves

Folding Pattern 
Below is a crease pattern for making an antiprism 
column. For an N-gon column the pattern should 
be N segments tall with angles β = π/N and ! 
ranging from 0 to π/2 -β. Red and blue lines 
represent mountain and valley folds, respectively. 
The top and bottom edges are joined to form a 
tube. 

Once folded, the structure can exist in either an 
extended (left) or collapsed (right) state, as 
pictured below.
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Force Measurements 
To explore their mechanical behavior, the 
antiprism columns were loaded from their extended 
state to their collapsed state. Below is the 
loading curve for two pentagonal columns, one 
with ! = π/12 (left) which exhibits snapping 
behavior, and one with ! = 5π/36 (right) whose 
loading curve is continuous. Red and blue 
represent compression and extension, respectively.

Snapping Behavior Arises from Geometry 
The stable configurations of the antiprism column 
occur where there is no bending of the facets, 
thus the segment lengths and folding angles of 
the folded model should remain consistent with 
that of the flat crease pattern. The parameter θ 
is the rotation of one polygon relative to its 
adjacent polygon (below, left). The graph (right) 
shows all the calculated values of θ that do not 
involve bending of the facets over the range of ! 
for N = 6.
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The bifurcation point for N = 6 occurs at ! = π/6. 
All hexagonal antiprisms with ! values to the right 
will not exhibit snapping behavior, while in 
theory, those to the left have the potential to do 
so, undergoing facet bending (above, left) when 
transitioning between stable states.  
Theory vs Experiment 
In reality, the transition from bistable to 
monostable behavior occurs at a lower ! value 
than the calculated bifurcation point. The 
discrepancy is due to the use of a purely 
geometric model, which does not account for 
spring forces within the paper that have a 
tendency to resist folding of the creases.

The above right plot shows the force magnitude of 
the last snap for columns with various values of N 
and !. For N = 9 and 10 at ! = π/12, no data 
exists because the snapping force required 
exceeded the force required to tear the paper. The 
left plot shows all the values of Δθ for antiprisms 
with the same parameters. The zero region of the 
force plot is greater than the zero region of the 
Δθ plot due to the aforementioned unaccounted 
spring forces.

No DataNo Data

Designing the Response 
The graph below shows snapping force as a 
function of Δθ with red corresponding to the first 
snap and green corresponding to the last snap 
during the compression of the antiprism columns. 
Using this data, a crease pattern can be reverse 
engineered which, once folded and mechanically 
loaded, would produce a force curve with the 
desired response.  The CP was designed such that, 
once folded and loaded, it should produce a force 
curve whose snap magnitudes exhibit exponential 
growth.

Using data from the graph above, the crease pattern below 
was designed to produce a force curve whose snap 
magnitudes exhibit exponential growth. The subsequent graph 
shows the input force used to generate the CP in blue, and 
the response of that CP under axial compression in green.


