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Abstract
The Gauss-Bonnet theorem is a powerful result central to much of modern mathematics. At its heart, it gives the
relationship between the curvature of a surface and the amount you turn as you travel around the surface’s boundary.
This can be used to create a system for sculpture where loops are controlled in order to give the surface form. Starting
with paper strips, moving through Curvahedra to a metal sculpture, we explore the creative power of this theorem.

The Gauss-Bonnet Theorem

The Gauss-Bonnet (pronounced bo-NAY) Theorem is a generalisation of the classic school geometry result
that the sum of the angles of a triangle is 180° [2]. It is one of mathematics’ most elegant results about the
geometry of the world we live in, but is not broadly known. A statement of the theorem gives a hint as to
why, as it requires calculus and a little topology to read.∬
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Yet an intuition of the central idea does not require all that mathematical machinery. In particular the symbols
above are required to control a very intuitive concept of a surface [8]— any surface, the surface of the earth,
the bonnet of a car (the British version of the American “car hood” feels more apropriate here), the skin on
your hands, all are surfaces. In fact any three-dimensional object must be surrounded by a surface, though
here we will only look at smooth surfaces that do not have sharp corners.

Paper, from Pieces to Strips

A simple example is a flat piece of paper, so let us start there. We also need the idea of paths, and more
precisely loops, on this surface. Any line you draw on the paper will do. Generally a closed loop divides the
surface up into two pieces, the inside and the outside, just as a surface in general divides three dimensional
space into an inside and an outside.

(a) (b)

Figure 1: Triangle on a flat sheet of paper (1a), and the same triangle on rolled paper (1b).
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Note that the word “generally” above is doing a lot of work. There are certainly examples where this is
not the case, a rich question to explore in topology. In this case, however, we will restrict ourselves to curves
that are separating (they divide the surface into two pieces) and also do not intersect themselves.

On the piece of paper we can draw a triangle (Figure 1a). The angles of this triangle will (famously) add
up to 180°. As the paper flexes and bends this remains true; the triangle gets bent alongside the paper, but does
not change its shape on the paper, as shown in Figure 1b. These changes are controlled by a closely related
theorem that Gauss called the “Theorema Egregium” or honorable theorem [2], that tells how a surface can
flex without changing its geometry.

Is it possible to create a triangle with a different angle sum? For drawings on a flat piece of paper,
the triangle sum theorem going back beyond Euclid [3] limits this. Gauss’ result shows even bending the
paper does not help. Yet with strips of paper we can set up a triangle with any length edges and any side
lengths. For example, Figure 2a shows a triangle with three equal length edges and 90° angles. Notice that
this triangle cannot stay flat, but it could fit onto a sphere. In fact eight such triangles divide up a sphere into
equal pieces (Figure 2b).

(a) (b)

Figure 2: Equilateral triangle with three 90° angles (Figure 2a), and the octahedral sphere made from 8
connected together (Figure 2b).

Angle sum, Turning and Gaussian Curvature

The angle sum of a triangle is closely related to a more general concept, the total turning as you go round a
loop. In the case of a flat triangle (on the piece of paper) this must be 360°.

Arbitrary Polygon

Internal angle
Turning at the corner

Figure 3: The internal angle and external angle (turn) at the corner of a polygon.

The total internal angle of a polygon has a close connection to its turning. At each corner of a polygon
the amount needed to turn from travelling along one side to the next is 180° minus the internal angle, as
shown in Figure 3. The total turning is therefore 180° times the number of sides minus the total internal
angle.

We can now see that this turning for the 90° equilateral triangle (Figure 2a) is 270°. So in a full loop
returning to the same position and direction, we have turned less than 360°. Just staying with equilateral
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triangles (with all side lengths and angles the same) we can make a family of triangles by changing the angle,
we see these change from looking like pieces of a sphere, through flat (with a corner of 60°, and so a turning
of 360°) to looking like a piece of a saddle (Figure 4).

Figure 4: Equilateral triangles with angles, 120°, 90°, 60°, 45°, moving from positive through 0 to negative
curvature.

The difference between these three options is described by what is called “Gaussian curvature”, with
positive curvature (for the sphere), zero curvature (for the flat) and negative curvature (for the saddle). Both
positive and negative curvature also have an amount that increases as the radius of the sphere gets smaller or
the saddle gets, for want of a better word, saddlier. We can see this in the paper strip models as the angle
at the corners increases (to give greater positive curvature) or decreases (to give more negative curvature).
Returning to the Gauss-Bonnet formula (Figure 5) we can see that two of its terms are given by the turning
round a loop (related to the angles at the corners) and the overall Gaussian curvature.

∫∫
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total curvature of surface

total turning round boundary

Figure 5: Annotated statement of Gauss-Bonnet Theorem

For the moment we will leave off the final term χ(M), other than to say it is always a whole number, and
for the regions that we are studying so far is always 1. The inclusion of π might hint that the units should be
in radians, which we will use for the remainder of this paper. For the regions we have studied therefore the
Gauss-Bonnet formula can be summarised as the sum of turning and curvature is equal to 2π. Radians help
here to making the clean relationship between curvature and turning.

First Sculptures

Figure 6: Curve with no overall turning.

As we are now thinking about the turn on the boundary, we do not just have to think about paths with
straight edges and turn only at corners; we can instead look at a curved path. For a curved path like Figure 6
the total turn is in fact 0, as we turn one way and then back the other way so we are facing the same direction.
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These curves are used in the Curvahedra system that was created by the author, in part to explore the ideas
developed in this paper [4]. It was intended as an artistic system that could be used by many people to
create attractive objects, while communicating and building intuition of fundamental mathematical ideas;
the aesthetics giving a motivation for the mathematical thinking. The curved edges were originally chosen
as they seemed to produce more pleasing forms than the more clinical effect of straight strips. They turned
out to also introduce a level of flexibility that the straight strips lacked. Their end points can be stretched
apart from the flat configuration, which is impossible for a straight strip. Curvahedra pieces will be used for
the remainder of this paper, as their precise cut and connection system makes it quicker and easier to create
models than stapling or taping paper strips.

Applying the formula we can see that when the χ(M) term is 1 and the turning is 2π, the total curvature
must be 0. This does not mean that it is 0 everywhere, as for the triangles above. In fact we can even make
a loop that contains 0 curvature, but must have both negatively and positively curved regions within it. As a
result the region must contain equal positve and negative curvature regions (Figure 7).

(a) (b) (c) (d)

Figure 7: Surfaces with total curvature 0.
(7a), (7b) Two surfaces with equal positive and negative curvature,

(7c) Surface from (7a) with non-zero curvature region removed, lying flat,
(7d) Surface from (7b) with non-zero curvature region removed, but unable to lie flat.

The fact that the curvature can change means that we can use the system to sculpt, creating regions of
positive and negative curvature to make any shape that we wish (Figure 8).

(a) (b)

Figure 8: An icosahedral sphere made from 12 5-branch Curvahedra pieces, forming 20 individual curved
triangles (8a) and the same pieces coming together in a surface of varying curvature (8b).
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Euler Characteristic

When a surface is closed up something interesting happens. The surface no longer has a boundary, but still
clearly has curvature. The sphere in Figure 8a has 20 triangles, each with a boundary with turning of 9π/5.
As for the individual triangles, the sum of the curvature and turning is 2π, they have a curvature of π/5. The
total for the 20 triangles is thus 4π. So for this sphere, we have total curvature 4π, and from the formula we
have χ equal to 2. Taking a slightly different sphere with four triangles with 2π/3 angles, and thus turning
of just π each, we get a curvature of π for each triangle and again a total curvature of 4π. In fact, any sphere
that we make will have a total curvature of 4π. Even if we take a distorted sphere, like Figure 8b, with parts
of positive curvature and others of negative curvature, then the result has a total curvature of 4π.

This is related to the birth of topology and a result far older than Gauss-Bonnet. The first version is
Descartes’ theorem [5] that points out that for any polyhedron the total “angle defect” is 4π. The angle defect
is the difference of the total angle at a vertex from 2π. If you think about a polyhedron, the individual pieces
of the surface are flat, the edges are flat pieces with a fold, so the only place for curvature is at the corners.
The angle defect measures that curvature. This result was perhaps regarded as a curiosity until Euler gave
a more discrete version. Note that for a flat polygon the total internal angle is π(edges − 2). Knowing the
number of edges around each face (and nothing more about its geometry) we can therefore find the total angle
available for all the corners. Subtracting that from 2π times the vertices or 2πV gives the total angle defect.

We can simplify further; we wish to sum π(edges − 2) for every face, but every edge is on exactly 2
faces. So summing the edges on all of the faces will give a total of twice the total edges for the polyhedron
or 2E . Similarly summing −2π over all the faces will give −2π times the total number of faces or −2πF.
The total angle available for the corners is thus, 2πE − 2πF and the total angle defect is 2πV − 2πE + 2πF.
By Descarte’s theorem, this is equal to 4π. Dividing by 2π gives the famous Euler characteristic, for any
polyhedron that is topologically a sphere:

V − E + F = 2

In general this value V − E + F is called the Euler characteristic [5] and is an invariant not just for polyhedra,
but for any graph drawn onto a surface. The Euler characteristic χ(M) (for a surface M) is the final term in
the Gauss-Bonnet theorem. This draws an amazing link between a geometric property of a surface (its total
curvature) and a simple topological property (the Euler characteristic of the surface related to the number of
holes passing through it). This idea has proven to be very powerful. Through the nineteenth and twentieth
century, its generalisations provided some of the great jewels of differential geometry and topology, such as
the the Riemann-Roch theorem [6] and Atiyah-Singer Index theorem [1].

Gauss-Bonnet by Counting

The arguments used above can be stretched further, transforming the calculation of curvature from calculus
into simple counting. For example, the triangle surfaces shown in Figure 7, have total curvature 0, established
by the turning round the boundary, but this can also be calculated directly from the surface. Notice that the
loops are all triangles and the vertices have 5, 6 or 7 branches, but with equal numbers of 5’s to 7’s.

As the angles at a vertex are all equal, the internal angle at the corner of a 6-branch piece means a
turning of π − 2π/6 = 2π/3 (120°), so triangles with three such vertices will lie flat. A 5-branch has turning
of π − 2π/5 = 3π/5, so (assuming all loops have three sides) this introduces five places with too little turn;
in fact 2π/3 − 3π/5 which is π/15 too little. Counting all five gives π/3 too little turning, that must be
compensated for with positive curvature of the region. In contrast, a 7-branch has turning of π−2π/7 = 5π/7
so a total of 7(5π/7 − 2π/3) = π/3. This extra turn cancels out the reduced turn from the 5-branch piece.
Note that for this effect to hold all the edges of both the 5 and 7-branch need to be completed into triangles.

The moral here is that in a surface with all triangles a combination of a 5 and a 7-branch will cancel each
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other out. For an n-branch piece, the angle missing (or extra for negative values) is n(2π/3 − (n−2)π
n ) which

is (6 − n)π/3. So just counting the branches is enough to work out the curvature; less than 6 branches gives
positive curvature, 6 gives zero curvature and more than 6 gives negative curvature. In a surface with only
triangles, adding the differences to 6 for all pieces gives the overall curvature. For example one 3-branch will
be balanced by three 7-branch, to give a surface with zero curvature.

Increasing the number of edges round a vertex adds extra turning to a loop, decreasing the curvature of
the region it surrounds. Similarly adding edges to a loop increases turning. In this case adding an extra corner
of a 6-branch to the loop adds turning of 2π/3; twice the effect of adding an extra edge at a vertex. So for a
closed surface the curvature can be calculated by counting the difference between 6 and the number of edges
at each vertex. Then adding that to 2 times the differences between 3 and the number of edges round each
loop. These rules also operate locally, so it is easy to see where a surface has positive or negative curvature.

As an example, consider the torus, which has Euler characteristic of 0, so total curvature of 0. As an
aside, the fact that this is the same curvature as the plane is the key to the notion of a covering space, another
important tool in modern geometry [8]. The torus in Figure 9a demonstrates this by having twelve 5-branch
pieces (on the outside, giving positive curvature) and six loops with four sides (in the centre, giving positive
curvature). As adding an edge to a loop has twice the effect of removing an edge from a vertex, the six loops
cancel the twelve vertices for a total of zero curvature.

Given that the total curvature of a torus must be zero, it is natural to ask if there is a torus with zero
curvature everywhere. The answer is complicated. Such a torus, called the flat torus, definitely exists, but
not in 3d. To see this, bend a sheet of paper into a cylinder and then watch it struggle and crumple as you try
to bend it into a torus. It is possible to make the Curvahedra variation of the flat torus, as shown in Figure 9b.
Every loop of this torus does surround zero curvature, but you can see that it might be hard to fill in the
regions with pieces with zero curvature everywhere.

(a) (b)

Figure 9: Two Curvahedra toruses.

From Theory to Sculpture

To take the theoretical description above and apply it to sculpture we simply need a material that will behave
like the paper and mylar. A sheet material that is quite rigid as a surface, but will bend easily at right angles
to it. Though sticking with Mylar already allows relatively large objects (Figure 10). Once the material is
chosen, it can be used to make loops, which are locally flat. The total turn around a loop will control the
curvature and placing loops together builds up a surface. For many materials the physical properties of the
material will bend the loops into pleasing shapes without additional work. For example thin sheet plastic.
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Figure 10: 2-foot cube approximating a Schwartz P-surface [7], constructed with the Museum of
Mathematics and help from conference goers at JMM 2019 and NCTM 2019.

A great challenge for larger scale is sheet metal. Although there are springier varieties that might work
directly as above, mild steel introduces two problems. It can distort, bending in plane, thus changing the
geometry. More seriously it will bend into shape and will prefer to do so at a place where it is already
bending. Thus without tools it is hard to get smooth bends over a long piece of the steel. Techniques such as
roll bending have been developed to create smooth bends [10]. Note that wheeling using an English wheel
can take advantage of the ability of the metal to stretch in its surface, so is actually able to change the local
geometry of the steel to give compound curvature (generally positive). Hammering can have a similar effect,
and even produce beautiful negative curvature, for example in the work of Benjamin Storch (Figure 11) [9].

Figure 11: Negative curvature in a stainless steel Möbius Strip, created by Benjamin Storch.
Photo ©Benjamin Storch, used with permission.

http://www.benjaminstorch.com/?project=spiral-moebius

The key to all these techniques is the gentle bending of the metal that must happen over an area. Using
the Gauss-Bonnet theorem, however it is possible to smoothly exert force over a loop while interacting at a
small number of points. The method is to create a loop from several pieces, but with loose connections so
no piece has to bend, for example with long bolts, then slowly tightening at each connection point. As the
loop gets gently tightened the main force travels in the plane of the surface which does not want to bend, and
so is smoothly distributed over the loop. As a result smooth bends can be achieved without tools beyond the
wrench to tighten the bolts (Figure 12).
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(a) (b)

Figure 12: A metal curvahedron ball in the collection of the Univeristy of Arkansas Honors College (12b),
and the Ball in construction (12a).

the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the
Illustrating Mathematics program.

The metal sculpture shown in he final section was created as a comission for the University of Arkansas
Honors college, from a gift from Dean Lynda Coon. Both prototypes and the final pieces were made by
Emily Baker of the Fay Jones School of Architecture at the University of Arkansas.
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