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Abstract 

Found in Proposition 2 of Book VII of Euclid’s Eléments, the procedure now known as Euclid’s Algorithm 

computes the greatest common divisor of two numbers.  Motivated by recent studies that have applied this 

algorithm to the analysis of rhythmic structures in music, it is extended here into the realm of architecture.  A 

modeling algorithm is derived from the repeated subtraction method outlined in the original book.  The 

output is then brought into a complex geometry format by using Mobius transformations to generate 

mappings onto the sphere.  Dome-like forms are produced that await further architectonic development and 

evaluation. 

Introduction 

Euclid’s algorithm is a computational procedure used to calculate the greatest common divisor (gcd) of 

two numbers.  The crucial insight is that if the greatest common divisor divides into the initial numbers 

then it also divides into their difference.  This can be done in a step by step fashion involving only the 

elementary operation of subtraction, and thus lends itself to being automated.  It is also a way to distribute 

the remainder of two numbers for the cases where there is no common divisor other than 1.  Because of 

this feature it was discovered to be a surprisingly effective way to analyze musical rhythms.  Toussaint [3] 

for example has conducted a comparative analysis of several musical rhythms.  Surprising similarities 

were found spanning  different cultural, stylistic and historical musical forms. 

Levels and Groupings in Euclid’s Algorithm 

It is this latter usage of Euclid’s algorithm that sparked my interest in possibly using Euclid’s Algorithm 

(EA) in an architectural setting.  I was intrigued with the idea of taking two unrelated numbers and being 

able to compare them in an orderly way, distibuted as Toussaint put it as evenly as possible.   

The work presented here is a work-in-progress based off of Toussaint’s work on this subject.  A 

particular musical rhythmic pattern (assumed here to be cyclic) can be seen as the number of beats within 

a measure, and thus represented as a binary sequence.  If given this information only, for example 5 beats 

in a measure of 8 time units, one can ask the question how would these beats be distributed within the 

measure as evenly as possible ?  The procedure to find this out begins by associating each beat with a 

time unit and grouping them together, leaving a remainder behind.  One repeats this procedure until there 

is only one group of remainders left, after which all the groups can be ungrouped and the resulting 

sequence is asserted to be the rhythmic sequence for that particular pair of numbers.  An example of the 

Cuban cinquillo, using Toussaint’s notation, appears as : [x . x x . x x . ]. 

After reading this and other papers on the subject [1], I wondered how the steps of EA were 

connected to these evenly spaced rhythms.  EA works as such: given two numbers, set the larger number 

to m, the smaller number to n.  Subtracting n from m leaves a remainder r.  For the next step, if r is less 

than n, swap m and n and set n equal to r.  Otherwise set m equal to r and leave n as is.  Repeat until n = 

1. Borrowing from Toussaint’s exposition of a similar problem considered by E. Bjorkland [3],  evenly 
distributing a sequence of one number into a sequence of another larger number (in this case 12 into 19)
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can be demonstrated as a step by step sequence of groupings as shown in Table 1.  The right side of the 

table lists the values of the EA equation, the left side the letter index for each level or step of the 

procedure. 

 

Table 1:  EA array with row index, number sequence and equation values.  The number of shaded areas 

per row correspond to the equation's n value. 

 

 
 

Next, an algorithm is created that uses the result of EA, the last row A of Table 1, to generate a 

subsequent row's groupings as an evenly distributed sequence.  This proceeds stepwise and results in an 

evenly distributed binary array as shown in Table 2.  The EA equation at each row is recovered and the 

number of groupings, indicated again as contiguously shaded cells, correspond to a row's n value.  

 

Table 2:  EA-ED diagram showing an even distribution of groupings related to steps of Euclid’s 

Algorithm.  A grouping index is found at the lower right corner of the shaded cells. 

 

 
 

Architectural Applications 

 
Noting that EA-ED generates a nested sequence of groupings whose number reduces while its 

membership enlarges, I thought that this may be a way to handle circular architectural forms. One could 

orient the larger sized groupings that are fewer in number closer to the pole and thus address practical and 

aesthetic problems encountered in polar or spherical coordinate systems where intervals shrink as you 

approach a point.  Thus I began thinking of how this would look and behave as a kind of dome.  Given 

the EA-ED output of Table 2, a grouping becomes a rectangle whose width, i.e. the number of cells it 

includes, increments per level according to the Fibonacci Series.  The number of these rectangles 

corresponds to the n value of EA.  In this way an EA-ED array of rectangles is produced. 

 

To go from a polar grid to a dome, a Möbius transformation [2] followed by a stereographic 

projection is performed.  Out of the three types of mappings, elliptical, parabolic, loxodromic, I chose the 

latter due to the fact that I was envisioning this as a more oriented (in both a mathematical and literal 
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sense) type of form.  After generating a particular EA-ED rectangular array and converting it into polar 

coordinates, the array is adjusted so that it  scales and rotates onto itself in order to produce a loxodromic 

mapping of the array onto the sphere.  The rows correspond to the y dimension of the polar coordinate 

system, which circle around the poles like lines of latitude.  The first EA-ED row is mapped along the 

equator which is set at the ground plane.  The following rows cover the remaining hemisphere to the pole, 

with rectangles growing in size but reducing in number.  This characterizes the form, pattern and structure 

of the dome.  Figure 1 shows a schematic plan view of this.   

 

 
 

Figure 1:  Left, plan view of an array of EA-ED rectangles mapped onto the upper half of the sphere, the 

indices correspond to the groupings index of Table 2.  Right, alternate m,n arrays. 

 

My first attempts in developing these schematic structures into architectural forms involved 

considerations of cladding and orientation.  I first sent the poles of the loxodromic map onto the normal 

north-south poles of a sphere to generate domes with rotational symmetry and an oculus at the top.  The 

cladding of this dome is derived from this symmetry.  An example of this dome is shown in Figure 2.  I 

then altered the diameter of the stereographic sphere so that the planar poles did not map to the poles of 

the sphere, resulting in domes that lose rotational symmetry, whose oculus is not at the top, and whose 

cladding is derived from bilateral congruency.   Figure 3 depicts such a dome.  

 

 
 

Figure 2 :  Top, plan and elevation of a normal pole dome. 
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Figure 3:  Top, plan and elevation of a tilted pole dome. 

 

Conclusion 
 

What began as a way to produce evenly spaced patterns was then further enriched by the elaboration of 

the repeated subtraction method of Euclid’s Algorithm, resulting in a modeling algorithm that furnishes 

architectural form, pattern and structural elements as part of an integrated system.  One can intervene at 

many levels within this system to control outcomes.  Within the base algorithm, the initial choice of two 

numbers can be related to particulars of a given site or structure.  If circular forms are desired, then one 

can intervene in the mapping phase and adjust the Möbius transformations that govern how points map to 

themselves (or not).  And one can intervene in the stereographic projection phase and explore the 

symmetries that result.  Further investigations are planned for rectilinear structures, structures that derive 

from the planar Möbius transformation maps, other kinds of complex mappings that generate curvilinear 

forms.  As well the architectural ramifications of Euclid’s Algorithm in the broader context of number 

theory [1] are only lightly touched on here, and could serve as the basis for further research. 
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