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Abstract
I consider iterated function systems (IFSs) in R3 with a common contraction rate λ. For certain values of λ for which
the iterated function system has sufficient overlap, an approximation to the resulting attractor is structurally capable
of being 3D printed.

Introduction

The Sierpiński Triangle, as shown by Kenneth Falconer in [1] and illustrated in Figure 1, is one of the
most well known and reproduced 2-dimensional fractals in mathematics. Its 3-dimensional counterpart, the
Sierpiński Tetrahedron, was first illustrated by Dr. Alan Norton and included by Mandelbrot as plate 143
in [2]. Since these fractals contain infinite detail at all levels, we may only model them by forming a finite
approximation to the actual objects. Even with this restriction, producing successful 3D prints of these fractal
objects presents some structural challenges. These challenges arise due to the fact that individual tetrahedra
in the model are only connected to each other at a single point, thus making the model unstable when printed.
In this paper I show a technique that preserves a property of the fractal object called total self-similarity and
also allows the model to be strong enough to be 3D printed.

Figure 1: Standard Sierpiński Triangle

Each of the fractals we consider can be realized as the attractor of an iterated function system. To
produce models of fractal objects that are 3D printable the contraction rate is varied so that the individual
components in the object have sufficient overlap.
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The Sierpiński Tetrahedron can be realized as the attractor of the following IFS:

For 0 < λ < 1, we consider the compact invariant set “attractor” Λλ of the iterated function system

Fλ(x) :=
{
fi(x) := λx+ (1− λ)pi|i ∈ {0, 1, 2, 3}

}
,

where p0 = (1, 1, 1), p1 = (1,−1,−1), p2 = (−1, 1,−1), p3 = (−1,−1, 1) on R3. The pi are the fixed
points of the respective contractions, and Λλ lies in their convex hull ∆.

By definition the attractor Λλ satisfies

Λλ =
3⋃
i=0

fi(Λλ).

An approximation to the attractor ∆n is formed inductively by iterating the IFS such that

∆n =
⋃
ε∈

∑n

fε(∆),

where ε = (ε0, . . . , εn−1) ∈
∑n,

∑
= {0, 1, 2, 3}, and fε = fε0 . . . fεn−1 .

Since fi(∆) ⊂ ∆ it follows that ∆n+1 ⊂ ∆n and thus

Λλ = lim
n→∞

∆n =
∞⋂
n=1

∆n.

Each of the models in this paper was formed in either OpenSCAD in the case of 3D objects, or Maple
2015 for 2D objects by computing ∆n for n between 5 and 7.

For λ = 1/2, Λλ is the standard Sierpiński tetrahedron. For values of λ < 1/2 the intersections
fi(∆) ∩ fj(∆) = ∅ for i 6= j and thus Λλ is disconnected and therefore unprintable as a single object.

Golden Sierpiński Tetrahedra

Values of λ for which substantial overlaps occur, i.e., for which fi(∆)∩ fj(∆) has interior points, were first
considered by Broomhead et al. [3]. They show that for the Sierpiński triangle this property of overlap occurs
for λ > 1/2 and that for certain values of λ the fractal is totally self-similar and has empty interior. They
also generalize their results to 3 or more dimensions, although this paper is the first to present the attractors
graphically and as physical models.

Definition. We call any set S that satisfies fε(S) = fε(∆)∩S for any ε ∈
∑n and any n totally self-similar.

Broomhead et al. were able to prove in [3] that for each of the unique positive solutions ωm to the
equation

λm + λm−1 + · · ·+ λ = 1 (1)

the attractor Λωm is totally self-similar and has empty interior.
The totally self-similar property arises from the fact that for these values of λ the holes in the overlap-

ping regions of the attractor perfectly align with each other. This alignment was found by solving for values
of λ for which the overlap region is an image of ∆. Namely fi(∆) ∩ fj(∆) = fi(f

m
j (∆)) for each solution

ωm to equation (1). It is an interesting fact that for m = 2, ωm = (
√

5− 1)/2 ≈ 0.618, the reciprocal of the
golden ratio. This gives rise to the use of the name Golden Sierpiński tetrahedra to describe the attractors
Λωm . For m = 2 and m = 3 the 3D printed approximations to the attractors in R3 are shown at the top of
the next page.
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Figure 2: 3D printed approximations to Λωm for λ = ω2 ≈ 0.618 and λ = ω3 ≈ 0.544

Other Sierpiński N-gons with Overlap

The Sierpiński triangle can be naturally extended to form other fractals by starting with an IFS whose fixed
points form higher order N-gons as Dennis and Schlicker have shown in [4]. In three dimensions this idea has
been expanded to create fractals such as the Sierpiński Octahedron and the Menger Sponge. In the case of
the Sierpiński Octahedron the fractal is structurally sound with a standard contraction rate given by λ = 1/2.
Although 3D printable with this contraction rate we may extend the results of the Sierpiński Tetrahedron to
this fractal to yield a model that is visually pleasing. Given a contraction rate of ω2 we observe a similar
pattern to the one formed in the tetrahedron. The attractor maintains the property of total self-similarity and
its structural stability is further increased. This allows for the fractal to be formed without the risk of the
individual components separating from each other during the process of 3D printing.

Figure 3: Approximation of the Sierpiński Octahedron with λ = 1/2 and a 3D printed version with λ ≈ ω2
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As was done with the Sierpiński Triangle to form the Sierpiński Tetrahedron, a similar generalization
of the Sierpiński Carpet gives rise to the familiar Menger sponge. By increasing the contraction rate beyond
λ = 1/3, so that there is significant overlap, the sizes of the holes in the fractal are reduced and therefore the
integrity of the 3D printed model increases. It remains to be proven, but for each unique positive solution to

2λn + 2λn−1 + · · ·+ 2λ = 1 (2)

the Menger Sponge appears to be totally self-similar. For n = 2 the solution to equation (2) is given by
λ = (

√
3− 1)/2 ≈ 0.366.

Figure 4: Sierpiński Carpet with λ = 1/3 and λ = 0.366, and a 3D printed Menger Sponge with λ = 0.366

In a similar way to that which Broomhead et al. used to find equation (1) in [3], I solved for values of
λ for which the holes in the overlapping regions of the Menger Sponge perfectly align with each other. This
process gave rise to equation (2). By looking closely at Figure 4 you can observe that the number of holes in
the Sierpiński Carpet when λ = 0.366 is reduced compared to when λ = 1/3. This is precisely due to the
alignment of the smallest holes shown in the overlapping regions of the attractor.

Conclusion

The methods shown here can be further applied to other fractals in three dimensions to yield new models
that may be manufactured by 3D printing. For example, by starting with an IFS that has as a convex hull,
a dodecahedron, the dodecahedron flake is formed. By increasing the contraction rate of such attractors
beyond the point where the functions in the IFS are “just touching” to where they have significant overlap
we can create fractals that are conducive to 3D printing. Further work remains to find specific contraction
rates for which the resulting fractals have significant overlap and are also totally self-similar.
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23:3 (2014), pp. 285–309.

Plante

454


