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Abstract 
 

TSP Art is a technique to represent an image by tracing out a solution to the Travelling Salesman Problem. It results 

in a distinctive and attractive aesthetic, consisting of a simple closed curve with varying densities. This paper explores 

a straightforward method to smoothly transition between two TSP solutions resulting in interesting animations. I 

extend this method to open curves and to curves on the surface of a sphere. Finally, I present examples of how this 

technique is used to fill in between key TSP Art frames of an animation. 

 

Introduction 

TSP Art, well described by Bosch and Kaplan [7], involves creating images by judiciously placing cities, 

and then drawing a path that visits all the cities and returns to the beginning with as short a path as possible. 

Since all TSP Art is made up of a single non-intersecting loop (a simple closed curve), it would be 

interesting to see one of these loops smoothly and continuously morph into another piece of TSP art without 

crossing itself (see Figure 1). In this paper I take existing ideas from Computer Graphics and Differential 

Geometry to write an easy-to-implement algorithm that morphs the especially difficult curves that are TSP 

Art 

 

Figure 1: Morphing the simple closed curve of one TSP Art piece into another. 

 

The task of smoothly interpolating one shape into another is an active research field and very useful 

in computer graphics. There are many papers with titles in the set {“polygon”, “closed planar curve”, 

“shape”} × {“tweening”, “morphing”, “metamorphosis”, “blending”} each with their own particular 

problem constraints. Papers by Sederberg and Greenwood [10] and by Gotsman and Surazhsky [5]  present 

two different approaches but are more complex than we need here, as they include constraints to do things 

like maintain a triangulation of the interior, or find appropriate point correspondences between the images.  

The new method closely resembles multi resolution blending by Goldstien and Gotsman [4]. Both their 

method and this method smooth the initial and target curves into regular polygons using the idea of 

curvature flow (see the discussion of the SMOOTH subroutine below). Goldstein and Gotsman then combine 

the two animations at the smoothed ends, and then “undo the smoothing steps” in a manner of speaking. 

Anyone familiar with this earlier work will see that our method conceptually does the same thing but in a 

slightly different manner described in the discussion of the TIGHTEN subroutine below. 

This paper is organized as follows: I describe the morphing algorithm, first at a high level with 

pseudocode, and then we examine two subroutines SMOOTH and TIGHTEN and I show some example runs. 

Following this, I describe implementation details such as what programming environment I used and some 

ideas for improving performance. I show how we can modify this algorithm to work with curves on the 

surface of a sphere, and on open curves. Finally, we will look at some fun results. 
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The Morphing Algorithm 
 

We quickly describe our algorithm first and then follow this with a pseudocode listing, followed by a 

more in depth discussion of each stage. 

 

 

The morphing algorithm takes as input two TSP Art tours P and Q as two lists of 2D points (see Kaplan 

and Bosch [6] for how these might be obtained). We want P and Q to have the same direction and the same 

number of points. So if necessary, reverse the order of P (and / or Q) such that both are clockwise. Then, 

add midpoints to the longest segment of P (or Q) until they each have the same number of points n.  Then 

rotate the indices of Q until the locations of the points of Q most closely match the positions of the 

corresponding points of P. SMOOTH P and Q into an elliptical shape in a series of animated frames. 

Calculate each new frame by moving each point to the average of its neighbors and itself, taking care not 

to introduce any crossings (Figure 2a-b). Then reverse the Q animation and concatenate it to the end of the 

animation of P (Figure 2c). Finally, apply a TIGHTEN step to the points of the animation similar the 

SMOOTH step but in the time dimension, taking care not to introduce any crossings (Figure 2d). For 

reference, Table 1 has a more precise pseudocode listing of this algorithm. 

 

The SMOOTH Subroutine 

The goal of the SMOOTH routine is to calculate an animation that turns a tour into an elliptical shape, or 

more precisely into an affine regular polygon. Differential Geometry has a useful tool to do this very thing 

called mean curvature flow: a process that asymptotically turns a smooth curve into an ellipse in a well 

behaved way. It accomplishes this by moving each point of a curve by an amount proportional to the amount  

 

 

 

Figure 2: (a,b) SMOOTHing two polygons into eliptical shapes; (c) reversing the second smoothing 

animation and appending it to the first; (d) TIGHTENing the entire animation. 

(a) (b) 

(c) 

(d) 
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of curvature at that point. The calculation in Line 4 has a theoretical basis described by Chow and 

Glickenstein [2] who approximate this process for polygons. Those interested in the powerful things that 

geometric flow can do should read the excellent paper by Crane et al. [1] which uses a slightly different 

kind of flow to smooth out surfaces quickly. Or readers can look at SMOOTH’s opposite: an algorithm that 

takes smooth curves and makes wiggly mazes [8]. 

Unless we take precautions, SMOOTH would cause our curve to eventually shrink into a point. To keep 

things at the same scale, we renormalize the points after each step. Line 7 makes sure the scale and position 

of the points remain constant from frame to frame. The SMOOTH routine stops when we get a self-similar 

figure: an affine regular polygon. 

Using mean curvature flow to shape our curves does not guarantee that our edges will not cross (Figure 

3a). So we can simply add the following check: if moving the point would result in an edge crossing within 

the current frame, then the point stays put (see Line 5). This appears to effectively prevent edge crossings, 

at least for non-contrived examples, even though it is not guaranteed to do so (Figure 3b). 

Table 1: Pseudo-code of the morphing algorithm. Indices of points are to be interpreted modulo n. 

1 

2 

3 

SMOOTH(T):  // calculate animation that turns a tour T into an ellipse 

    F0 ← T;  μ0 ← avg position of F0;  δ0 ← avg distance between μ0 and the points F0 

    iterate on i: 

4 

5 

        Fi ← (pi,1, …, pi,n), where pi,j = ⎰(pi−1,j−1 + pi−1,j + pi−1,j+1) / 3,  if no crossing is introduced 

⎱pi−1,j,                                     otherwise 

6 

7 

8 

9 

10 

11 

12 

        μi ← avg position of Fi;  δi ← average distance between μi and the points of Fi 

        Fi ← ((Fi−μi)×δi-1/δi)+μi−1 

    until Fi ≈ Fi-1 

    return (F0, F1, …, Fi) 

TIGHTEN(A): // smooth the points of an animation in the time dimension 

    repeat until manually halted: 

        for each frame Fi in A that is not a beginning or end frame: 

13 

14 

            Fi ← (pi,0, …, pi,n), where pi,j = ⎰(pi−1,j + pi,j + pi+1,j) / 3,   if no crossing is introduced 

⎱pi−1,j,                              otherwise 

15 

16 

17 

18 

19 

20 

21 

22 

    return A 

MORPH(P, Q):  // calculate an animation that smoothly transitions tour P into tour Q 

    make P and Q clockwise 

    add a midpoint to the longest segment of P (or Q) until they are the same size: n points 

    shift the indexes of Q until ∑i∊0…n|pi − qi| is minimized. 

    (P0, …, Pf) ← SMOOTH(P) 

    (Q0, …, Qg) ← SMOOTH(Q) 

    A ← TIGHTEN(P0, …, Pf, Qg, …, Q0) 

  

 

 

Figure 3. (a) A self intersection; (b) the animation after avoiding crossings. 

(a) 

(b) 

Morphing TSP Art

331



The TIGHTEN Subroutine 

Figure 2c shows us a polygon P morphing into an ellipse first and then morphing into a polygon Q. 

Technically this satisfies the problem we set out to solve and yet it seems unsatisfying. We want to have 

the animation look like it is going directly from P to Q without any intermediate steps. 

To fix this, we can run the animation through a routine called TIGHTEN. It might help to think of the 

frames of the animation as cross sections of a tube of stretchy fabric shaped like P and Q on each end and 

like an ellipse in the middle. The goal then is to simulate the movement of each point of this stretchy tube 

based on the points ahead and behind in (time). As with SMOOTH we avoid introducing self-intersections 

and we get the satisfying transition that we see in Figure 2d. 

This TIGHTEN step is analogous to the second part of the algorithm by Goldstien and Gotsman [4] 

where they recover the high frequency details as they add back in more details. 

 

Implementation 

This algorithm is simple enough to implement in JavaScript which has the benefit of requiring only a web 

browser to run it. In order to display the results, I relied on the D3 library [3] to update and animate the 

paths of an SVG image in the browser window. As an added bonus, D3’s Voronoi module was useful for 

generating the original TSP art tours. 

I did notice that when n gets too high (~ 400 pts) the algorithm gets slow. By slow I mean greater than 

one minute on a single core of an Intel Xeon @ 2.80GHz. Without getting into a complexity analysis of the 

algorithm here, I will just note that the run time seemed to behave between O(n2) and O(n3) for observed 

values of n < 5000. The following performance improvements were called for. 

In order to pare down the number of frames being sent to TIGHTEN, I modified SMOOTH to just save 

the animation frames when the cumulative movement of all the points exceeds some threshold. A nice side 

effect is that this makes the animation appear to move with a more constant speed, instead of something 

that moves quickly at the beginning, and then decreases in speed. 

A performance improvement for SMOOTH is obtained by noticing that when the curve is smooth 

enough (average angle < 5°) we reduce the points by deleting every other one. This is similar to the 

multiresolution technique used in numerical analysis. This allows us to work on a reduced set of points as 

representative of the entire thing. The “missing” cities get added back in when needed by interpolating 

between the undeleted points. Of course, any number of polygon simplification routines such as the Ramer–

Douglas–Peucker algorithm [9] would suffice – though there may be more to keep track of. 

Open curves. If we wanted to morph two polygonal chains (i.e., not just closed loops), we merely have to 

set the endpoints of the polygonal chains fixed from frame to frame, and then skip the normalization step. 

What ends up happening then is SMOOTH turns the given curve into a line segment rather than an elliptical 

shape (see Figure 4a). If TIGHTEN was pulling a tube of stretchy fabric in our analogy before, now it is 

pulling a rectangular sheet with satisfying results as well (see Figure 4b). 

 

 
Figure 4: (a) Turning an open curve into a line segment with SMOOTH; (b) Applying TIGHTEN to two 

open curves. 

(a) 

(b) 
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On the surface of a sphere. Another variation I personally find very intriguing is to move the entire 

problem to the surface of a sphere. To do this we start by listing our points as 3D points that are projected 

to the unit sphere. Then, throughout the algorithm, whenever a point is moved, we just normalize it to 

project it back to the surface. New routines were used to calculate the distance between points on the surface 

of a sphere, the angle between two arcs, whether two arcs intersect, etc. One interesting consequence to 

moving to a sphere is that the normalization step of SMOOTH (Line 7) no longer needed to factor in the δ 

values that kept the curve from shrinking. Figure 5 shows a spherical TSP Art morph. 

 

 

 

 

Concluding Remarks 

We have tools in hand to create a novel animation medium. A natural thing to do is to make a .gif.  The 

animation shown in Figure 1, for example, is a cute novelty that can be shared on social media. I am also 

making an animated short film, although at the time of this writing, the animation is still incomplete. When 

it is complete, it will appear on the website dmswart.com. In the meantime, Figure 6 shows selected still 

frames. 

An anonymous reviewer suggested a great idea: if we render the curve, substituting the time dimension 

for the third spatial dimension, the result is an attractive design for a sculpture, evocative of Segerman and 

Irving’s developing fractal curves [6]. See Figure 7. 

Finally, I cannot claim that every transitional frame maintains the same aesthetics as TSP Art: they are 

not as crinkly, and they do not exhibit that constant distance between adjacent lines that give TSP Art its 

maze-like quality.  Future work could address these issues.   

 

Figure 5: TSP Art on a sphere, morphing from a globe to a soccer ball. 
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Figure 6: Two key frames and an in-between frame: The travelling salesman starts his journey. 

 

 

Figure 7: Two views of a hypothetical sculpture with a circle on one side, and the symbol π on the other. 

(a)

 

(b)

 

(c)
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