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Abstract

Bobbin lace is a 500-year-old �ber art form created by braiding together �ne threads. In its design, lacemakers

employ doubly periodic textures to create contrast and interest in a predominantly monochromatic fabric. In the past

we have created a model for these doubly periodic patterns which employs graph drawings to describe the �ow of

threads. In this paper we demonstrate that these graph drawings, which we call `tesselace patterns', exist for each

of the 17 planar periodic symmetry groups. We provide an algorithm for exhaustively generating patterns with a

particular symmetry on a grid of �xed size. We also explore the symmetry of the interlaced fabric resulting from

these patterns.

Introduction

Bobbin lace is a traditional �ber art dating back to the mid-16th century which was used to decorate clothing

and furniture. In previous work we introduced a mathematical model for the doubly periodic patterns used

in bobbin lace designs [5, 6]. Since that initial foray, we have been exploring algorithms for generating

new and interesting periodic patterns based on the model; patterns which we will refer to as `tesselace'.

We start by giving a brief review of the technique used in the craft and summarize the key elements of

our mathematical model. In the following sections, our goal is to emulate the aesthetic appeal of traditional

patterns. To that end, we present an algorithm for generating tesselace patterns with a speci�c symmetry type

and demonstrate that the algorithm produces representatives from each of the 17 planar periodic symmetry

groups. We conclude by discussing symmetry at the level of individual threads and how this can be explored

using the two-colour symmetries of the plane.

Bobbin lace is an alternating braid constructed using four threads at a time. There are just two actions

used by lacemakers to form the braids: the cross (C) and the twist (T ). These actions, illustrated in Figure

1, can be combined in any order including a simple CT which gives an open weave (also known as a triaxial

weave), CTCTCTCT which gives a dense plait, and CTTTCT which creates a small hole. Regardless

of which combination of actions is used, the result is always an alternating braid. The alternating structure

gives stability to the seemingly fragile fabric by having each thread locked in place by its neighbours.

A common component of bobbin lace designs is a doubly periodic planar pattern called a �ground� or

a ��lling�. These repeating patterns can be modelled as the pair (∆(G), ζ(v)) in which G is a 2-regular

digraph (a directed graph with two incoming and two outgoing arcs at each vertex), ∆(G) is a drawing of

G and ζ(v) is a mapping from the vertices of G to a braid word formed from any combination of cross and

twist. Each arc in ∆(G) represents a pair of threads and the graph drawing describes the �ow of threads

from one braid on four threads to the next. As illustrated in Figure 6, a single graph drawing will result in

several lace grounds when paired with different ζ(v) mappings.
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Figure 1 : Bobbin lace is created from two basic actions: a) cross and b) twist. c) During

construction, braids are temporarily held in place with pins.

In order to produce workable lace patterns, the graph drawings ∆(G) must possess certain properties.

Each property is derived from attributes of the lace itself. For example, the alternating braid formed by bob-

bin lace is just like a mathematical braid. As a consequence, all thread crossings must happen in the forward

direction; strands cannot loop backwards. In the model, this corresponds to a combinatorial embedding that

is free of directed cycles. A full explanation of each of the properties can be found in our previous work [6];

what follows is just a summary. The doubly periodic pattern corresponds to a planar graph with an in�nite

number of edges and vertices. However, the translational symmetry of the pattern allows us to represent

the in�nite graph by a �nite graph drawn on a torus. In the combinatorial embedding of ∆(G), the �nite

2-regular digraph must have a genus of one, be free of contractible directed cycles and at each vertex the

outgoing arcs must be arranged in a rotationally consecutive order (out-out-in-in as opposed to in-out-in-out

in clockwise order). Finally, the �nite graph drawing on the torus has a unique partition into osculating

circuits (i.e., it can be partitioned into a set of closed curves whose elements can touch but no pair of curves

can cross transversely) each of which, when smoothed, is homotopic to a (1, 0) torus knot.

In the past, using combinatorial algorithms to generate graph drawings consistent with our model, we

have discovered over 5 million tesselace patterns, each of which can be combined with a variety of cross and

twist actions. The end result is more bobbin lace grounds then it would be possible to process by an �army�

of lacemakers. We therefore turn our attention to �nding a set of patterns which warrant our consideration

�rst. To do this we will look at the symmetry of these fabrics.

Algorithmically Generated Patterns with Symmetry

Flipping through a catalogue of traditional bobbin lace grounds, one quickly gets the sense that symmetry is

a common, if not dominant, quality of these periodic patterns. It is also important to recall that the de�nition

of lace is an open fabric, one with many holes. In our approach, the holes in bobbin lace correspond (roughly)

to faces in the tesselace pattern. We therefore turned our attention to symmetry in the size and position of

faces in tesselace patterns and propose the following theorem:

Theorem. There exist tesselace graph drawings for each of the seventeen periodic symmetry groups in the

plane.

By way of proof, we present a combinatorial algorithm for generating tesselace graph drawings of each

symmetry group and example results.
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Overview of Algorithm

Although G is a digraph, we will ignore the direction of edges when discussing the symmetry of∆(G). The
direction of the edges is very important in the making of lace but, from the perspective of a lace admirer, the

threads themselves have no orientation and it is dif�cult to determine in which direction a piece of lace was

worked. From a mathematical perspective, disregarding the direction of edges results in a more interesting

solution domain; when symmetry generators are applied to directed edges, any transformation other than

parallel re�ections and parallel glides will result in a contractible cycle and therefore cannot be a braid.

Consider one of the 17 planar periodic symmetry types which we will refer to here as γ. Our algorithm
is broken into two parts: (1) Exhaustively generate straight-line graph drawings on the integer lattice for 4-

regular undirected graphs such that the closed line segments of the drawing form a motif that is mapped onto

itself by the symmetry operations of γ; (2) Assign a direction to the edges of the undirected graph consistent
with the properties of a tesselace pattern. As in our previous work, we use backtracking for both parts and

generate patterns on various grid sizes. In backtracking, a conceptual tree is created in which internal nodes

are �partial� solutions and every solution is a leaf, but not all leaves are solutions. As a node x is created, it

is evaluated by a heuristic that, if it fails, implies that it is not a solution and none of its children can lead to

a solution; thus x is a failed leaf. On the other hand, if the heuristic succeeds, then either x is a solution or

the children of x must be created to determine whether some descendant of x is a solution.

(a) (b)

1

1

(c) (d)

1

√
3

(2,2)
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(4,0)

(1,1)

(2,2)
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Figure 2 : Square lattice: (a) Near neighbours (b) Lattice points. Hexagonal lattice: (c) Near

neighbours (d) Lattice points.

In part (1), solutions are represented as a set of vertices in which each vertex has an adjacency list

and an integer lattice position. The algorithm starts by positioning a minimal set of symmetry generators

within a �xed size lattice grid (details provided in next section) and creating isolated vertices at each lattice

position. At each node in the backtracking tree, an edge e connecting near neighbours (as de�ned in Figure

2) is inserted into the graph. Also at each backtracking node, the set of edges representing the images of e
under the isometric transformations of the symmetry generators is inserted into the graph drawing.

Rules. In part (1) of the algorithm, the following conditions must hold at each node of the backtracking tree:

1. Each vertex has degree ≤ 4.
2. Edges only intersect at end-vertices.

3. Vertices are mapped to lattice points.

4. All transformed copies of an edge under symmetry group γ are present in the embedding.

When all vertices either have degree 4 or degree 0 and there is at least one vertex of degree 4, the graph

is complete. Isolated vertices are removed and the graph embedding is tested to determine if it has the correct

genus (i.e., it is a torus graph).
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(c) ∗2·
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(g) invalid
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Figure 3 : All possible locations for symmetry generators on a square lattice

For part (2), the data from part (1) is extended to include direction information for each edge. A new

backtracking tree is created. At each node in the backtracking tree, a vertex v is selected and all edges

incident to v are assigned a direction. Vertices are processed in order of the extent to which direction has

been assigned to its edges; vertices with a higher number of directed incident edges will be processed �rst. A

lightweight triage of the vertices is all the sorting that is required; vertices are placed in one of �ve buckets:

0, 1, 2, 3, done. All vertices start out in bucket 0. When an edge is oriented, the two end-vertices of the

edge move up one bucket. The process stops when either we have reached a state that cannot produce a

complete solution or all edges are in the done bucket. The triage approach signi�cantly reduces the number

of nodes in the backtracking tree. If none of the edges incident to a vertex have a direction, then there are

four direction assignments to explore ({i, i, o, o}, {o, i, i, o}, {o, o, i, i}, {i, o, o, i} where i is in and o is out)
giving four branch points in the backtracking tree for the node. If one or two edges incident to a vertex have

been assigned a direction, the backtracking tree will have at most two branch points at the node.

Rules. The following conditions must hold at each node of the backtracking tree in part (2):

1. Each vertex has in-degree ≤ 2 and out-degree ≤ 2
2. Outgoing edges are consecutive in rotational order

3. An oriented edge contributes to the out-degree of one of its end-vertices and the in-degree of the other

When all edges have been successfully oriented, the digraph is tested for the presence of contractible

cycles and the wrapping index of its osculating circuits.
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Algorithm Details

The previous section gives an overview of the algorithm but there are several details to consider, many of

which impact the size of the backtracking tree and therefore the performance of the algorithm.

In a tesselace graph drawing, vertices of the graph are mapped to integer lattice points. Transforming

an edge of a tesselace graph drawing is permissable only if it takes the end-vertices of an edge from one pair

of integer lattice points to another. As a consequence, there are only a small number of locations within a

grid of �xed size where each type of symmetry group generator can be placed. Figure 3 shows all allowed

positions per generator on a square lattice. For example, in Figure 3(a) the ∗4· generator can be placed at

(col, row) or at (col+ 1
2 , row+ 1

2) where col, row ∈ Z. As shown in Figure 3(g), the ∗4· generator cannot
be at position (col + 1

2 , row). In Figure 3, bold blue curved lines meet at the center of a point group; bold

blue lines are mirror lines and bold green lines are glides lines. Thin gray dotted line segments are the images

of the bolder red dashed line segments under symmetry operation.

In the following discussion, a lattice point (col, row) is near a Cartesian point (x, y) (where x, y ∈ R)
if (col, row) = (⌊x⌋, ⌊y⌋). Similarly, a lattice point (col, row) is near a non-horizontal line ℓ if given a point
(x, row) on ℓ then col = ⌊x⌋. If ℓ is horizontal then given a point (col, y) on ℓ, a lattice point (col, row) is
near ℓ if row = ⌊y⌋.

Several notations exist for labelling the planar symmetry groups. We will use the orbifold notation of

Conway [1] which provides a topological description of the symmetry. The set of all points that are the same

under a symmetry operation is called an orbit. An orbifold is �folded� by identifying all points in the same

orbit. In orbifold notation, unique rotational (or gyrational, to use Conway's term) symmetries are listed �rst

by specifying the number of repetitions required to rotate a point back to its original position. The point

group n· (which corresponds to Cn in Schön�ies notation) is the group of rotations σ such that σn = 1,
where 1 is the identity and n is the smallest number of rotations that returns a point to its original position.

Re�ection (or kaleidoscope) symmetries are preceded by a ∗ and are represented by the number of mirror

lines that meet at a point. The point group ∗n· (Dn in Schön�ies notation) is the dihedral group of order n.
A single mirror line is represented by a solo ∗; a glide line is indicated by ×. For example, ∗632 indicates a

pattern with three distinct re�ection point subgroups of types ∗6·, ∗3· and ∗2·; 2222 indicates four distinct

rotation point subgroups each of type 2·; 4∗2 represents a mix of rotations and re�ections, namely, 4· and
∗2·; and ∗× indicates a symmetry group with single mirror re�ection and a glide re�ection.

For improved performance, we shall restrict the placement of symmetry group generators to con�gura-

tions that generate the smallest number of graphs from the same isomorphism class. This is done by choosing

the least common, ideally unique, generator from the symmetry group and placing it at or near the lattice

point (0, 0). In cases where there is a single unique point group generator, such as ∗2· in ∗442, the choice
is clear. In cases where there are multiple unique point group generators, such as ∗6·, ∗3· and ∗2· in ∗632,
we choose the generator with the fewest number of valid positions on the lattice; in the case of ∗632 this is

∗6·. In cases where there are multiple point group generators of the same type, such as 2222, each one of

the generators is placed at or near (0, 0) in turn and lexicographic comparison of the corresponding labels is

used to �nd the representative of the class. For 2222, the worst case scenario, this is a comparison of four

different labels.

For symmetry groups with single mirror re�ections or glide re�ections, we must compare the labels

rooted at any lattice point a ∈ A where A is the set of lattice points in the period rectangle that intersect the

mirror or glide line l. If l does not intersect any lattice points, then A is the set of lattice points in the period

rectangle that are near l. In Figure 3, lattice points in A are indicated by red dots.

One �nal consideration for the algorithm is the subgroup relationships between symmetry groups. When

generating a pattern with 632 symmetry, a possible outcome induced by the generators is a pattern with

symmetry ∗632. The pattern produced by the algorithm must be tested for additional �unwanted� symmetry.
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Results

Figures 4 and 5 show example tesselace patterns for all 17 planar periodic symmetry types along with some

worked examples.

333333

3 ∗ 33 ∗ 3/333

632 442

∗442∗442/442

∗333

4 ∗ 2442

22222222

∗632∗632/632

Figure 4 : Examples of tesselace patterns from each of the 17 periodic planar symmetry groups
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∗2222 22∗22×2 ∗ 22

∗∗ ◦××∗×

Figure 5 : Examples of tesselace patterns, continued

In addition to �nding patterns having a particular symmetry type, this algorithm allowed us to explore

much larger grid sizes. Using the previous lattice path approach, our exploration was restricted to grids less

than 5 × 5 in size [6]. Using the symmetry approach, we were able to explore grids as large as 10 × 10
and 18 × 6 with partial results for even larger grids. The increased size of the tesselace patterns is due in

large part to the repetition of the data in the solution. For example, in a pattern with ∗2222 symmetry, only

a quarter of the grid needs to be explored, the rest of the solution data is populated by re�ection.

Work in Progress: Interlaced Symmetry

We can also consider the symmetry of bobbin lace at the level of individual threads. Because lace is a very

thin fabric, the symmetry of its threads can be described in terms of a two-sided plane. Modeling a thin

layer as a two-sided plane can be traced to research on thin �lms and mono-molecular layers conducted by

chemists and physicists in the 1930s [4]. This approach was also used by Cromwell to describe the interlaced

patterns of both frieze [2] and doubly periodic [3] celtic knots.

In bobbin lace, as in celtic knots, the top and bottom of the two-sided plane are very closely related:

each thread is visible from above and below with an over-crossing on one side corresponding to an under-

crossing on the other. To capture the polarity of the thread crossings, we visualize the motif of a pattern as

a tile that is white on one side and black on the other. If all of the motifs are oriented the same way (e.g.,

all are white side up) then the possible periodic symmetries of the two-sided plane are the same as the well

known 17 wallpaper groups for a one-sided plane. If the polarities are not completely aligned (some tiles are

white side up while others are black side up) then there are an additional 46 symmetry arrangements which

map bijectively to the two-colour symmetries of the one-sided plane [4].

In orbifold notation, two-colour symmetry types are labelled as F/K where F is the symmetry of the

tiling without regard to colour (referred to as the �full group�) andK is the symmetry that maps tiles of the

same colour to one another (referred to as the �kernel�) 1[1].

1 For ∗ ∗ / ∗ ∗ there are two distinct symmetry groups with the same F/K label which Conway et al. distinguish as ∗ ∗ / ∗ ∗(1)
and ∗ ∗ / ∗ ∗(2)
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(b)(a) (c)

Figure 6 : Two traditional patterns with the same pair traversal graph drawing: (a) Maille �a-

mands (b) Tesselace graph drawing (c) Fond �a la vierge. Hand drawn images of lace grounds

from The Art and Craft of Old Lace [7].

In Figure 6, we classify two traditional patterns which are both created from the same tesselace pattern

using different braid word mappings. InMaille �amands, a 90◦ rotation of the red tile through a vertex of the
tile around an axis perpendicular to the plane of the lace leaves the pattern invariant (up to thread colour). The

tiles all have the same polarity orientation and the pattern possesses 442 symmetry. In contrast, the motifs

in Fond �a la vierge are oriented in two different ways represented by the red and yellow squares. A yellow

square maps onto a red square by a 180◦ rotation through a side shared by the two tiles around an axis in the
plane of the lace. Fond �a la vierge possesses ∗2222/2222 symmetry. The ∗2222 full group symmetry can

be observed by �attening the over and under crossings � that is, consider the shadow projected by this piece

of lace. The 2222 kernel symmetry group takes red squares to red and yellow squares to yellow. Finally, the

tesselace graph drawing itself has ∗442 symmetry. We note that 442 and ∗2222 are subgroups of ∗442.
We are currently in the process of going through catalogues of traditional lace patterns to identify which

of the 63 possible two-sided plane symmetries have been used historically. As part of the process, we are

ranking the symmetries by how often they appear and looking for symmetry types that should be possible

but are not currently part of the lacemaker's repertoire.
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