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Abstract

Existing techniques to create images with color-rever¢orgother kinds of color symmetry) produce results that
look less than natural. We produce images vaifiproximatecolor symmetries by using the domain coloring algo-
rithm with suitable complex Fourier series and photograplas have varying degrees of naturally occurring color
symmetry. The technique yields patterns where the colonsyiny looks less crystallographic than those previously
produced, but perhaps more artistic. The technique pradaicénteresting combination of symmetrical and natural
patterns.

I ntroduction

In Creating Symmetr{2], | expanded on a Fourier series methpd [4] to produce apcehensive set of
recipes for functiong’ : C — C with translational symmetry in two directions thalso satisfy acolor-
reversingcondition

fla(z)) = =f(2), (1)

wherea is some isometry of the plane. Such a transformatiois called acolor-reversing symmetrgf
the pattern obtained from the functign For instance, the right-hand side of Fighte 1 shows a pattéth
color-reversing quarter turns.

Figure1: A color-reversing patte riéht) created from complex esand a phétograph of an
African violet and its negative (left).

Patterns like this one are constructed from photographsyukiedomain-coloring algorithn3]. We
recall this two-step process for depicting a complex-véifumction f(z), as follows:

1. Assign a color to each point of the complex plane, perhapgywa photograph.
2. Color pixels in the domain (or a subset thereof) ¢f), by using the coloif (z) at the pointz.

To depict a color-reversing patterns, | devised photogcapbllages, where the color ofz is the
photographic negative of the color ef For instance, on the left in Figuré 1, a photograph of Afrigalets
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is juxtaposed with a rotated negative of the same photographder to accomplish this negative property.
When such a color wheel is used in conjunction with a functiat satisfies{1), the result is an image that
depicts the color-reversing property very accurately, rathe right in Figuréll. Since the actual symmetry
group of the pattern is cmm and the group obtained by lummggther all symmetries and color-reversing
symmetries is p4g, we call this pattern type p4g/cmm.

In this paper, | question whether patterns created from awstirgically created color wheel lead to the
most artistically satisfying patterns that might be pdssiith the technique of domain coloring. Although
the pattern in Figurgll is arguably more interesting thanpiimely diagrammatic ones from well-known
mathematical sourceis|[5, 9], | propose three other meth@dsriay be even better.

For instance, the photograph on the left in Figure 2 showsttimap of a red fir tree that had been cut in
such a way to create two differently-colored halves. By fimsing the photograph carefully in the complex
plane, locating the origin of the complex plane on the lineretthe image changes so distinctly, we create
a color wheel that has some of the character of a color-riexprgheel, without taking the instructions too
literally. Usingexactlythe same color-reversing complex waves that led to therpatteFigure[1, but with
the stump photograph as color wheel, we find the pattern ior€l@. We argue that this combination of
symmetry and approximate symmetry leads to more aesthgftaasing patterns than the precisely rigged
color wheels.

Figure2: An i ihapproximat coIreversmg syn"ietry c aﬁmme sameomplex
waves and a photograph of a freshly cut fir stump.

Color-Reversing Recipes

For any desired wallpaper group acting on the plane, we cak wat complex-valued Fourier series to
capture every possible function invariant under that paldir group. For instance, if we would like to
create patterns of type p2 with a generic lattice spannedptex vectord anda + bi, we start with the
elementary integer-frequency waves

Enm(X,Y) = 20X +mY) “\whereX = & — ay/bandY = y/b. )

A linear combination of these waves will be periodic withgest to the right lattice, but we only achieve p2
symmety if we follow the recipe

F@,y) = " anmBam(X,Y), Wherea, m = a_n . (3)
n,me”Z
We can check that keeping the given coefficients locked hagetccording to the recipe produces a function
invariant under the full group [2].
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Here’s one example to show how to create color-reversingrsstny. If, in addition to the recipe above,
we choose our coefficients so that every nonzero term haadneigs withn + m odd, then the function
acquires aegating half-turn This means that

f(=X+1/2,-Y +1/2) = - f(X,Y).

To check this, compute that the given transformation takeh ef the component waves [d (2) to the negative
of the wave that it is locked with. Hence, we get color-revgrsymmetry.

Suppose we have a pattern made from a funcfievith p2 symmetry that satisfies this color-reversing
condition as well. The symmetry group pf| includes the additional half-turn and can be seen to be a
different representation of the same group, p2 (with smalnslational symmetries). We call this larger
group, which includes symmetries together with color-reia ones, theolor groupof the pattern. Color-
reversing pattern types are classified by a symbol “colongfisymmetry group,” so a pattern made from the
recipe here would be classified as having type p2/p2. (Maagers will know the work of Washburl[8],
who advised museums to classify patterns according to metigians’ crystallographic schemes.)

The color-reversing nature of a pattern made from a fundtia follows this p2/p2 recipe will only
revealits color-reversing nature if we color the plane carefulye need to be able to detect the complex
valuef(z) as being, in some sense, the opposite ¢fz). In past work, | universally colored such functions
with a collage like the color wheel in Figulré 1, where a phoapd is juxtaposed with an upside-down copy
of its negative. As noted in the introduction, this oftendedo sharp edges and images that are perhaps a
little too cut-and-dried in their symmetry.

Let’s explore what happens when we make different choichsrdshould still be some visual relation-

ship between the pointsand—z in the color assignation used for Step 1 of the domain cajoaigorithm,
but it need not be one of strict photographic negation.

Figure 3: An patte metry type c2fhi), colored with a
photograph that is only vaguely color-reversing when tarnpside down (left).

For instance, in Figurel 3, turning the photograph upsidendmverses the position of the peach and
the apricot. The granite is relatively uniform, althougle fpeach shadow creates a darker patch on one
side. In the computed pattern, | see pairs of red and yellavtfiewith the yellow ones appearing to be
approximately-rotated negatives of the red ones. The p@p@ comes through, as long as we treat the
granite as a neutral color that serves as its own oppositié.alsuccess? It is only one of infinitely many
possibilities for patterns with this symmetry type that tige particular naturally two-colored photograph. |
like it, but continue to wonder if there were a better one bgavaiting to be found.

We've shown examples for only two of the possildié color-reversing pattern types. Instead of ex-
hausting the types, let's move on to other ideas for natyrahsetry.
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Conjugate Symmetry

The mappingz: — —z is only one of two nice maps of the complex plane to itself ttat intertwine with
order2 elements of wallpaper groups. The other is conjugations z, a flip about ther-axis. We say that
an isometry of the planey, is aconjugate symmetryf a function f from C to itself to mean that

flal(2)) = f(2).

Instead of negating the output value fofsuch a transformation returns the conjugate.

The algebra of conjugate symmetries is extremely similah&b of color-reversing symmetries. For
instance, the square of a conjugate symmetry is always a synyyrand the set of symmetries and conjugate
symmetries of a pattern form a group—which I'll call thenjugate color group-of which the symmetry
group is a normal subgroup of indéx The difference seems to be mostly in the Fourier seriestieation
of functions to make patterns patterns. I'll offer one ex#@yere, first showing how to construct functions
for a particular pattern type and then explaining the conseges for domain coloring.

Let’s construct functions with cm symmetry and then find ogage symmetries to create patterns with
conjugate color group cmm. The relevant wave functions are

Enm(X,Y) = 2miX+mY) “whereX = + iy /b, Y =z — iy/b,b € R, andn,m € Z.

Evidently, reflection across the-axis in the domain of this function swaps the waves withded{n,m)
and(m,n), so we find cm functions by choosing series where the coeffEgatisfy

Qnm = Am,n-

To achieve a conjugate color group cmm, we need reflectiamsadhey-axis, which I'll call o, to be
a conjugate symmetry. Witfi just as in[(B), but with theX, Y, and E's defined differently, we compute

f(o‘y(z)) = f(—?) = Z an7mEn7m(_Y> _X) = Z an7mE—m7—n(X7 Y) = Z a—m7—nEn7m(X7 Y)>
a,m a,m a,m
where we just re-indexed in the last step.

On the other hand,

F@) =D GmEnm(X.Y) = GumBon -m(X,Y) =Y ap-mEnm(X,Y).

a,m a,m a,m

We have already agreed to havg,, = a, , for our function, so the conjugate symmetry condition igtifu
and only if the coefficients,, ,, are all real! That’s an easy choice, so implementing thigpeefor conjugate
symmetry required no additional programming to lock wawggther.

Now that we know how to find functions with symmetry group cnd aonjugate symmetry group
cmm, let’s consider how to picture them. For color-revagssgmmetry, we would like a photograph where
the color at the point is the negative of the color & That's quite easy to arrange with a photographic
collage, but the effect is no more natural than what we aeliavith color-reversing symmetry. Instead, we
look for photographs where there is only approximate negati

Before doing that, let's pause to see what happens when we pisetograph that is approximatehye
same rather than opposite, when you flip it across a horizont#. aktook a rather symmetric picture of
a symmetric building in a symmetric setting: the Rosicraodiark in my neighborhood. | had to rotate it
so that the existing left-right approximate symmetry wolihg up with thez-axis, though it is displayed
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Figure4: A photograph with approximate fnirror symmeiry (I) attérn (jing afunction
with conjugate symmetry type cmm/cm. Note: | rotated thégginaph 90° before using domain
coloring.

here to promote viewing from a familiar angle. Using thishatite any of the functions we just constructed
should yield symmetry of type cm, but ordypproximate symmetgf type cmm.

The source photograph is not the only thing that has beereduthe computed image has been turned
as well, for artistic effect. Careful examination will shakat the mirror reflections across vertical axes are
precise, while those across horizontal axes are only sétsdun to find the differences made by the tree
against the sky on one side, as well as the variation in theaws. In the original image, the cross in the
tiled foreground appears to be centered, but the computadarshows that it is not perfectly so.

From an artistic point of view, | find this image more pleasihgn many cmm ones | have made. The
near miss of symmetry in the original photograph brings &résting extra variation in the computed image.
It seems to me that our minds most enjoy a balance of symmethasymmetry.

To show approximate color-reversing conjugate symmetogristructed waves with symmetry type
p31m and colored them with a minimalist photograph with acnlyague gesture toward conjugate symme-
try. Analysis quite similar to what | did above for the cmm/gattern will show that simply taking real
coefficients in a sum of waves with p31m symmetry will turn onextra mirror symmetry to create a pé6m
pattern. When that new mirror is colored in a reversing (oy \@pproximately reversing) source photo, we
get a pattern of type p6m/p31m. My example appears on theingtgure5.

2 ) e P N e
) 5 \_; R - "

Figure 5. A pattern (right) cate fm a functiownh conjugat e1|ry type p6m/p31m,
colored with a photograph where color-reversing conjugsyenmetry is particularly vague (left).
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Three-Color Symmetry

The types oB-color symmetry in wallpaper are numerols[[1, 2]. Here lettsap a couple of easy possibil-
ities. As with every wallpaper group acting on the plane,gheups with3-fold symmetry have their own
spaces of waves from which we can select invariant functi@rse way to achiev8-color symmetry is to
lock these waves together in packets to create a fungtwith color-turning symmetry, by which | mean
1 31

flwsz) = wsf(z), wherews = %\/_Z 4
This means that a turn dR0° about the origin in the domain of the function produces a iplidation of
the output value by this cube root of unity: a turnl@b° in our color space.

The easiest recipes to implement involve congruence cdassaves, as in the other examples in this
paper, are indexed by pairs of integérsm). If we choose frequencies in every term of our sum to satisfy
n—m = 1 (mod 3), then the function will have the color-turning symmetry @).( All such waves nec-
essarily pick up aolor-turning third-translation which I will define simply by example. If the generating
translations in the group are by complex humbleasdws, then the function satisfies

f <z+ 2 2w3> = wsf(2).

(Translation along the vect@r+ ws travels the long diagonal of the hexagonal fundamental)cell

| started with a p3 function and chose pairs satisfying tbisgcuence condition to produce a function
of color-turning typep3/3p3, which means that the functiohhas p3 symmetry and the functipf| has p3
symmetry, but with a different representation of the grounshorter translations are along the third of the
main diagonal, as mentioned before.

Figure 6: A composition of food slices has aproximate coIorturrﬁymmetry, as does the
digital image produced from color-turning waves.

To color the function, | composed a source photograph froptagmate third-circle slices of orange,
tomato, and onion, with a blueberry in the middle. When yau the photograph, the colors more-or-less
turn. The resulting digital artwork appears in Figufe 6b.

Note the amusing rhythm of “onion, tomato, orange” as you engpward along a line of slopgd®;
those are actual translational symmetries of the absohlte\of the function that produced this pattern. If
the color symmetry in the original photograph were exacthaiperfectly round blueberry at the center to
indicate a neutral color that does not turn, then those shagaele from the blueberries would actually have
3-fold rotational symmetries, as they are centerg-6dld rotation in the color group of the function that
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produced the computed image. Instead, they have a charfikiter quality. This is what | like about this
natural approach to color symmetry: we see features thahbalsymmetry with wavy goofiness.

The example in Figurgl 7b uses the same congruence condtibthis time with waves having p3m1
symmetry. The resulting type is calle@1m/3p3m1 because the symmetries of the absolute value of this
function include rotations abogtcenters without mirror axes through them.

pattern (right).

In this example, thé-fold color symmetry of the original photograph is so weat tine would-be color
symmetries along the main diagonal of the cell are extrerapiyroximate. Still, the rhythm of this pattern
is distinctive and would not be mistaken for a simple p3mziguatthat had nothing else to recommend it.

Conclusion

If I have given you ideas for your own experiments, you mapgspme new open-source software available
for just this purpose. In the summer of 2016, students Btitgnt and Son Ngo at Bowdoin College wrote
a new graphic user interfacel [6] for my existing suite of wafler software. Funding came from Bowdoin
through a grant entitle8ymmetryWorkshich funded an art exhibition and my visit to their campughie

fall of 2016.

One nice feature of the software is that you can call up a win¢iigure[8) to show which pixels of
your photograph are being called by the wallpaper functiomently held in the program settings. This helps
to steer the waves toward desirable features of the sourageinit also raises an interesting mathematical
question: Can we predict the range of a wallpaper functiomfits coefficients?

You can download the source code, which compiles througlQtzeator platform, get a zip file with
everything you need to run the executable in Windows, or fied dmg file for Macs.

Looking ahead to future work, | mention the image in FigureTie analytic techniques in this paper
can be used with a source image contrived to consist of gxdcde colors to produce new figurative tilings.
Software like that described by Adanova and Tari [7] at Bel@016 could be used to discretize the tiling to
allow laser-cutting or 3D printing. For another examplensider the pattern on the right in Figlide 2, which
shows a tiling of the plane by two different tiles. There mispde interest in combining these observations
about natural color symmetry with tiling or kaleidoscopegrmams.

With this new technique for natural color symmetry, matheosaand nature both contribute to the
appearance of symmetry in computed images. It seems to rheuh&auman minds like both and enjoy
seeing them play well together.
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see the range of the current wallpaper function alongsigegburce photograph. Here you can
see that the function is calling for pixels in a perfectly syatric way.

Figure 9: Functions with color-turning symmetry can be used to se&kasting tilings, as in
this seahorse pattern made from a function of type/spg.
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