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Abstract
Existing techniques to create images with color-reversing(or other kinds of color symmetry) produce results that
look less than natural. We produce images withapproximatecolor symmetries by using the domain coloring algo-
rithm with suitable complex Fourier series and photographsthat have varying degrees of naturally occurring color
symmetry. The technique yields patterns where the color symmetry looks less crystallographic than those previously
produced, but perhaps more artistic. The technique produces an interesting combination of symmetrical and natural
patterns.

Introduction

In Creating Symmetry[2], I expanded on a Fourier series method [4] to produce a comprehensive set of
recipes for functionsf : C → C with translational symmetry in two directions thatalso satisfy acolor-
reversingcondition

f(α(z)) = −f(z), (1)

whereα is some isometry of the plane. Such a transformationα is called acolor-reversing symmetryof
the pattern obtained from the functionf . For instance, the right-hand side of Figure 1 shows a pattern with
color-reversing quarter turns.

Figure 1 : A color-reversing pattern (right) created from complex waves and a photograph of an
African violet and its negative (left).

Patterns like this one are constructed from photographs using thedomain-coloring algorithm[3]. We
recall this two-step process for depicting a complex-valued functionf(z), as follows:

1. Assign a color to each point of the complex plane, perhaps using a photograph.

2. Color pixels in the domain (or a subset thereof) off(z), by using the colorf(z) at the pointz.

To depict a color-reversing patterns, I devised photographic collages, where the color of−z is the
photographic negative of the color ofz. For instance, on the left in Figure 1, a photograph of African violets
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is juxtaposed with a rotated negative of the same photographin order to accomplish this negative property.
When such a color wheel is used in conjunction with a functionthat satisfies (1), the result is an image that
depicts the color-reversing property very accurately, as on the right in Figure 1. Since the actual symmetry
group of the pattern is cmm and the group obtained by lumping together all symmetries and color-reversing
symmetries is p4g, we call this pattern type p4g/cmm.

In this paper, I question whether patterns created from sucha surgically created color wheel lead to the
most artistically satisfying patterns that might be possible with the technique of domain coloring. Although
the pattern in Figure 1 is arguably more interesting than thepurely diagrammatic ones from well-known
mathematical sources [5, 9], I propose three other methods that may be even better.

For instance, the photograph on the left in Figure 2 shows thestump of a red fir tree that had been cut in
such a way to create two differently-colored halves. By positioning the photograph carefully in the complex
plane, locating the origin of the complex plane on the line where the image changes so distinctly, we create
a color wheel that has some of the character of a color-reversing wheel, without taking the instructions too
literally. Usingexactlythe same color-reversing complex waves that led to the pattern in Figure 1, but with
the stump photograph as color wheel, we find the pattern in Figure 2. We argue that this combination of
symmetry and approximate symmetry leads to more aesthetically pleasing patterns than the precisely rigged
color wheels.

Figure 2 : An image with approximate color-reversing symmetry created from the samecomplex
waves and a photograph of a freshly cut fir stump.

Color-Reversing Recipes

For any desired wallpaper group acting on the plane, we can work out complex-valued Fourier series to
capture every possible function invariant under that particular group. For instance, if we would like to
create patterns of type p2 with a generic lattice spanned by complex vectors1 anda+ bi, we start with the
elementary integer-frequency waves

En,m(X,Y ) = e2πi(nX+mY ), whereX = x− ay/b andY = y/b. (2)

A linear combination of these waves will be periodic with respect to the right lattice, but we only achieve p2
symmety if we follow the recipe

f(x, y) =
∑

n,m∈Z

an,mEn,m(X,Y ), wherean,m = a−n,−m. (3)

We can check that keeping the given coefficients locked together according to the recipe produces a function
invariant under the full group [2].

Farris

132



Here’s one example to show how to create color-reversing symmetry. If, in addition to the recipe above,
we choose our coefficients so that every nonzero term has frequencies withn + m odd, then the function
acquires anegating half-turn. This means that

f(−X + 1/2,−Y + 1/2) = −f(X,Y ).

To check this, compute that the given transformation takes each of the component waves in (2) to the negative
of the wave that it is locked with. Hence, we get color-reversing symmetry.

Suppose we have a pattern made from a functionf with p2 symmetry that satisfies this color-reversing
condition as well. The symmetry group of|f | includes the additional half-turn and can be seen to be a
different representation of the same group, p2 (with smaller translational symmetries). We call this larger
group, which includes symmetries together with color-reversion ones, thecolor groupof the pattern. Color-
reversing pattern types are classified by a symbol “color group/symmetry group,” so a pattern made from the
recipe here would be classified as having type p2/p2. (Many readers will know the work of Washburn [8],
who advised museums to classify patterns according to mathematicians’ crystallographic schemes.)

The color-reversing nature of a pattern made from a functionthat follows this p2/p2 recipe will only
reveal its color-reversing nature if we color the plane carefully.We need to be able to detect the complex
valuef(z) as being, in some sense, the opposite of−f(z). In past work, I universally colored such functions
with a collage like the color wheel in Figure 1, where a photograph is juxtaposed with an upside-down copy
of its negative. As noted in the introduction, this often leads to sharp edges and images that are perhaps a
little too cut-and-dried in their symmetry.

Let’s explore what happens when we make different choices. There should still be some visual relation-
ship between the pointsz and−z in the color assignation used for Step 1 of the domain coloring algorithm,
but it need not be one of strict photographic negation.

Figure 3 : An pattern created from a function with symmetry type c2/p2 (right), colored with a
photograph that is only vaguely color-reversing when turned upside down (left).

For instance, in Figure 3, turning the photograph upside down reverses the position of the peach and
the apricot. The granite is relatively uniform, although the peach shadow creates a darker patch on one
side. In the computed pattern, I see pairs of red and yellow hearts, with the yellow ones appearing to be
approximately-rotated negatives of the red ones. The p2/p2idea comes through, as long as we treat the
granite as a neutral color that serves as its own opposite. Isit a success? It is only one of infinitely many
possibilities for patterns with this symmetry type that usethis particular naturally two-colored photograph. I
like it, but continue to wonder if there were a better one nearby waiting to be found.

We’ve shown examples for only two of the possible46 color-reversing pattern types. Instead of ex-
hausting the types, let’s move on to other ideas for natural symmetry.
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Conjugate Symmetry

The mappingz → −z is only one of two nice maps of the complex plane to itself thatcan intertwine with
order2 elements of wallpaper groups. The other is conjugation:z → z, a flip about thex-axis. We say that
an isometry of the plane,α, is aconjugate symmetryof a functionf from C to itself to mean that

f(α(z)) = f(z).

Instead of negating the output value off , such a transformation returns the conjugate.

The algebra of conjugate symmetries is extremely similar tothat of color-reversing symmetries. For
instance, the square of a conjugate symmetry is always a symmetry, and the set of symmetries and conjugate
symmetries of a pattern form a group—which I’ll call theconjugate color group—of which the symmetry
group is a normal subgroup of index2. The difference seems to be mostly in the Fourier series construction
of functions to make patterns patterns. I’ll offer one example here, first showing how to construct functions
for a particular pattern type and then explaining the consequences for domain coloring.

Let’s construct functions with cm symmetry and then find conjugate symmetries to create patterns with
conjugate color group cmm. The relevant wave functions are

En,m(X,Y ) = e2πi(nX+mY ), whereX = x+ iy/b, Y = x− iy/b, b ∈ R, andn,m ∈ Z.

Evidently, reflection across thex-axis in the domain of this function swaps the waves with indices(n,m)
and(m,n), so we find cm functions by choosing series where the coefficients satisfy

an,m = am,n.

To achieve a conjugate color group cmm, we need reflection across they-axis, which I’ll call σy, to be
a conjugate symmetry. Withf just as in (3), but with theX, Y , andEs defined differently, we compute

f(σy(z)) = f(−z) =
∑

a,m

an,mEn,m(−Y,−X) =
∑

a,m

an,mE−m,−n(X,Y ) =
∑

a,m

a−m,−nEn,m(X,Y ),

where we just re-indexed in the last step.

On the other hand,

f(z) =
∑

a,m

an,mEn,m(X,Y ) =
∑

a,m

an,mE−n,−m(X,Y ) =
∑

a,m

a−n,−mEn,m(X,Y ).

We have already agreed to havean,m = am,n for our function, so the conjugate symmetry condition is true if
and only if the coefficientsan,m are all real! That’s an easy choice, so implementing this recipe for conjugate
symmetry required no additional programming to lock waves together.

Now that we know how to find functions with symmetry group cm and conjugate symmetry group
cmm, let’s consider how to picture them. For color-reversing symmetry, we would like a photograph where
the color at the pointz is the negative of the color atz. That’s quite easy to arrange with a photographic
collage, but the effect is no more natural than what we achieved with color-reversing symmetry. Instead, we
look for photographs where there is only approximate negation.

Before doing that, let’s pause to see what happens when we usea photograph that is approximatelythe
same, rather than opposite, when you flip it across a horizontal axis. I took a rather symmetric picture of
a symmetric building in a symmetric setting: the Rosicrucian Park in my neighborhood. I had to rotate it
so that the existing left-right approximate symmetry wouldline up with thex-axis, though it is displayed
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Figure 4 : A photograph with approximate mirror symmetry (left) creates pattern using a function
with conjugate symmetry type cmm/cm. Note: I rotated the photograph90◦ before using domain
coloring.

here to promote viewing from a familiar angle. Using this with the any of the functions we just constructed
should yield symmetry of type cm, but onlyapproximate symmetryof type cmm.

The source photograph is not the only thing that has been turned; the computed image has been turned
as well, for artistic effect. Careful examination will showthat the mirror reflections across vertical axes are
precise, while those across horizontal axes are only so-so.It’s fun to find the differences made by the tree
against the sky on one side, as well as the variation in the windows. In the original image, the cross in the
tiled foreground appears to be centered, but the computed image shows that it is not perfectly so.

From an artistic point of view, I find this image more pleasingthan many cmm ones I have made. The
near miss of symmetry in the original photograph brings an interesting extra variation in the computed image.
It seems to me that our minds most enjoy a balance of symmetry and asymmetry.

To show approximate color-reversing conjugate symmetry, Iconstructed waves with symmetry type
p31m and colored them with a minimalist photograph with onlya vague gesture toward conjugate symme-
try. Analysis quite similar to what I did above for the cmm/cmpattern will show that simply taking real
coefficients in a sum of waves with p31m symmetry will turn on an extra mirror symmetry to create a p6m
pattern. When that new mirror is colored in a reversing (or very approximately reversing) source photo, we
get a pattern of type p6m/p31m. My example appears on the right in Figure 5.

Figure 5 : A pattern (right) created from a function with conjugate symmetry type p6m/p31m,
colored with a photograph where color-reversing conjugatesymmetry is particularly vague (left).
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Three-Color Symmetry

The types of3-color symmetry in wallpaper are numerous [1, 2]. Here let’srecap a couple of easy possibil-
ities. As with every wallpaper group acting on the plane, thegroups with3-fold symmetry have their own
spaces of waves from which we can select invariant functions. One way to achieve3-color symmetry is to
lock these waves together in packets to create a functionf with color-turningsymmetry, by which I mean

f(ω3z) = ω3f(z), whereω3 =
1 +

√
3i

2
. (4)

This means that a turn of120◦ about the origin in the domain of the function produces a multiplication of
the output value by this cube root of unity: a turn of120◦ in our color space.

The easiest recipes to implement involve congruence classes. Waves, as in the other examples in this
paper, are indexed by pairs of integers(n,m). If we choose frequencies in every term of our sum to satisfy
n − m ≡ 1 (mod 3), then the function will have the color-turning symmetry in (4). All such waves nec-
essarily pick up acolor-turning third-translation, which I will define simply by example. If the generating
translations in the group are by complex numbers1 andω3, then the function satisfies

f

(

z +
2 + ω3

3

)

= ω3f(z).

(Translation along the vector2 + ω3 travels the long diagonal of the hexagonal fundamental cell.)

I started with a p3 function and chose pairs satisfying this congruence condition to produce a function
of color-turning typep3/3p3, which means that the functionf has p3 symmetry and the function|f | has p3
symmetry, but with a different representation of the group with shorter translations are along the third of the
main diagonal, as mentioned before.

Figure 6 : A composition of food slices has approximate color-turningsymmetry, as does the
digital image produced from color-turning waves.

To color the function, I composed a source photograph from approximate third-circle slices of orange,
tomato, and onion, with a blueberry in the middle. When you turn the photograph, the colors more-or-less
turn. The resulting digital artwork appears in Figure 6b.

Note the amusing rhythm of “onion, tomato, orange” as you move upward along a line of slope60◦;
those are actual translational symmetries of the absolute value of the function that produced this pattern. If
the color symmetry in the original photograph were exact, with a perfectly round blueberry at the center to
indicate a neutral color that does not turn, then those shapes made from the blueberries would actually have
3-fold rotational symmetries, as they are centers of3-fold rotation in the color group of the function that
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produced the computed image. Instead, they have a charming off-kilter quality. This is what I like about this
natural approach to color symmetry: we see features that balance symmetry with wavy goofiness.

The example in Figure 7b uses the same congruence condition,but this time with waves having p3m1
symmetry. The resulting type is calledp31m/3p3m1 because the symmetries of the absolute value of this
function include rotations about3-centers without mirror axes through them.

Figure 7 : A plate of sweet peas of different hues (left) yields an approximately color-turning
pattern (right).

In this example, the3-fold color symmetry of the original photograph is so weak that the would-be color
symmetries along the main diagonal of the cell are extremelyapproximate. Still, the rhythm of this pattern
is distinctive and would not be mistaken for a simple p3m1 pattern that had nothing else to recommend it.

Conclusion

If I have given you ideas for your own experiments, you may enjoy some new open-source software available
for just this purpose. In the summer of 2016, students Bridget Went and Son Ngo at Bowdoin College wrote
a new graphic user interface [6] for my existing suite of wallpaper software. Funding came from Bowdoin
through a grant entitledSymmetryWorks!, which funded an art exhibition and my visit to their campus in the
fall of 2016.

One nice feature of the software is that you can call up a window (Figure 8) to show which pixels of
your photograph are being called by the wallpaper function currently held in the program settings. This helps
to steer the waves toward desirable features of the source image. It also raises an interesting mathematical
question: Can we predict the range of a wallpaper function from its coefficients?

You can download the source code, which compiles through theQtCreator platform, get a zip file with
everything you need to run the executable in Windows, or find the .dmg file for Macs.

Looking ahead to future work, I mention the image in Figure 9.The analytic techniques in this paper
can be used with a source image contrived to consist of exactly three colors to produce new figurative tilings.
Software like that described by Adanova and Tari [7] at Bridges 2016 could be used to discretize the tiling to
allow laser-cutting or 3D printing. For another example, consider the pattern on the right in Figure 2, which
shows a tiling of the plane by two different tiles. There may also be interest in combining these observations
about natural color symmetry with tiling or kaleidoscope programs.

With this new technique for natural color symmetry, mathematics and nature both contribute to the
appearance of symmetry in computed images. It seems to me that our human minds like both and enjoy
seeing them play well together.
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Figure 8 : Screenshot showing the window in theSymmetryWorkssoftware that allows you to
see the range of the current wallpaper function alongside the source photograph. Here you can
see that the function is calling for pixels in a perfectly symmetric way.

Figure 9 : Functions with color-turning symmetry can be used to seek interesting tilings, as in
this seahorse pattern made from a function of typepgg/3pg.
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