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Abstract
An order-n half-domino space-filling curve converges to a tile of area n2, two copies of which form the congruent
halves of an n × 2n domino. The order-2 Hilbert Curve and its square-filling order-n generalizations are special
cases where the length of the cut dividing the halves is n. But in a more general case, the division between the
two congruent halves is infinitely long, self-similar, yet almost-everywhere linear. The most extremely convoluted
half-domino tiles are generated by motifs that are double-stranded, self-avoiding tendrils. These patterns form an
interesting medium for mathematical, biological, ornamental, tiling, fabric pattern, and æsthetic exploration.

Figure 0

Introduction. This paper explains how the seemingly arbitrary tendril pattern in Fig. 0
can be the basis for a recursive space-filling curve with a self-similar, infinitely long, non-
fractal boundary that is both eye-catchingly beautiful and almost-everywhere linear.

I recently collaborated with a group of researchers who had earlier posited that self-similar,
space-filling curve constructions might model compactly folded DNA [1]. Our group re-
lied upon a new theorem that relates the fractal dimension of the boundary of a self-similar
space-filling curve to the distribution of the lengths of “near-loops” formed by the path’s
closest contacts with itself. I came up with a simple and elegant perturbation technique, as
applied to generalized Hilbert Curves, so as to create new space-filling curves with which
to experimentally confirm the theorem. In the limit, these curves are tiles with (handed) p4
wallpaper symmetry and nowhere-differentiable boundaries whose fractal dimension can
be discretely tuned—in theory if not in practice—arbitrarily close to 2.0. Remarkably, it’s possible for the
limit set of the boundaries of these space-filling-curve sequences to be space-filling curves themselves [5].

But as shown below, p4 symmetry is not necessary to construct square-based space-filling curves with
Hilbert-style connection geometry. It turns out that the Hilbert Curve and its order-n, square-filling gen-
eralizations can be considered degenerate cases of what I call half-domino curves.

The domino path constraint. Consider an n × n square, subdivided into n2 unit sub-squares. Choose a
sequence of edge-adjacent sub-squares starting at the lower left sub-square and ending at the lower right
sub-square, such that each of the n2 sub-squares is included in the sequence exactly once (the “Greek key
tour” sequence A0000538 [4] counts these sequences). This is equivalent to a Hamiltonian path of length
n2 − 1 (from sub-square center to sub-square center) on the edge-adjacency graph of the subdivision. Each
such path is also a motif that can be used to recursively build a sequence of longer self-avoiding paths formed
from n2 scaled-by- 1n copies of the motif, appropriately oriented and sequentially connected. The limit of the
sequence of exponentially lengthening paths, constrained within the confines of the initial square, and never
farther than any ε > 0 (no matter how small) from any given point in the square, is a space-filling curve.
Fig. 1 shows the motif and the first two approximation paths of an order-8, generalized Hilbert Curve.

Each motif travels via sub-squares from one corner to an adjacent corner (large dot pair, left, Fig. 1) of the
square subdivision. Therefore, one can place a scaled motif into any sub-square in one of four orientations
(small dot pairs). It is straightforward to prove that, for any given motif path, there is only one way to assign
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Figure 1 : Left: An order-8 motif, showing implicitly oriented sub-squares. Middle, Right: The
same motif applied to itself recursively according to those orientations to create a second and
third approximation to a space-filling curve (if PDF, you can zoom in to see the 643 − 1 details).

orientations to sub-squares.1 Beyond the four orientations, there is also a parity condition that necessarily
arises when connecting adjacent motif copies at corner sub-squares: the sequence of sub-sub-squares in each
component motif’s path must be followed in either forward or backward order. Because these Hamiltonian
paths are self-avoiding, a sub-square’s parity also declares which side of any given motif (in whatever orien-
tation) can be called outside or inside, depending (arbitrarily) on whether one were to close the open-ended
path into a self-avoiding loop in a clockwise or counterclockwise manner. It turns out there is a linkage,
though, between the four orientations and the two parities: sub-squares with dots oriented vertically must be
traversed backward whereas those with dot pairs oriented horizontally must be traversed forward.
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Figure 2 : All possible pairs of spacially adjacent, ori-
ented motifs whose sub-squares share an edge. Circled
pairs create impossible parity combinations.

Within the square subdivision, choose any
two sub-squares sharing an edge, not nec-
essarily sequentially along any path. Each
can be in one of the four orientations.
So, for any order-n motif (in Fig. 2 it’s
an order-6 motif), consider the complete
4× 4 matrix of spatially adjacent, pair ori-
entation combinations. Because we know
that individual motifs in sub-squares are
eventually all connected into a single self-
avoiding path at the next recursive stage,
certain combinations (circled) create im-
possible parity situations. Why? Because
the Jordan Curve Theorem requires that if
two parts of the plane are of opposite in-
side/outside parity, the self-avoiding path
must separate them. But no path segments
are there to do so.

The matrix’s remaining legal combinations form a pair of sub-matrixes, 3 × 3 and 1 × 1. As the sole legal
entry in its row and column, the 1×1 sub-matrix (Fig. 2, lower right top:top entry, highlighted), immediately
proves that—regardless of parity—the top edge of an oriented motif can only ever be adjacent to another
copy’s top edge, rotated 180° (the rest of this paper explores the consequences of this 1× 1 matching rule).
Furthermore, this constraint does not depend on any global shape of the collection of n2 sub-squares.

1In a three dimensional cubic subdivision, however, this is no longer true.
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Perturbed prototiles. Knowing that the top row of the order-n subdivision can only ever be adjacent to
an upside-down copy of itself during the process of recursive motif replication, we can carefully rearrange
some of the sub-squares along the top, to create a half-domino prototile, still composed of n2 sub-squares,
characterized by one indentation and one “outdentation,” each having the same shaped boundary. But if we
are to find a motif for that prototile, we must guarantee that the perturbed set of n2 sub-squares still has a
dual edge-adjacency graph that admits a Hamiltonian solution (e.g., at the very least, every sub-square must
still have two or more edge-adjacent neighbors). So consider, for example, carving a 2 × 2 indentation out
of the right side of the top of the order-8 subdivision, and transferring the sub-square “material”, as an anti-
symmetric outdentation, to the top of the left side (Fig. 3). There will be fewer Hamiltonian path motifs that
will work for this prototile compared with the n×n subdivision, but there will still be a great many of them.
And in every one, upon recursive replication, a top:top pair will then mate perfectly, creating a 1 × 2 sub-
domino in some orientation. We use the term self-negative to describe the perturbation: whatever its shape,
it has a central point of symmetry so as to fit with itself under 180° rotation. For generalized Peano curves
based on a diagonal connection geometry, “self-negative” is with respect to a point of rotational symmetry
at a square subdivision’s center [3]; here, where we’re using a Hilbert connection geometry, it is with respect
to the center of a domino (the top edge of the original square subdivision).

Figure 3 : An order-8 prototile, with an indentation and outdentation along the top. The sam-
ple motif recursively builds a space-filling curve with an infinitely long, non-fractal, self-similar,
almost-everywhere linear border (as before, if PDF, zoom in to see 262143 line segments).

Figure 4 : Bottom: The four simplest half-domino
curve motifs (k = 1). Top: A pair of (k = 3)
approximations, exactly covering a domino.

The simplest half-domino curves. The free-
dom to perturb the subdivision starts at n = 4.
Fig. 4 shows motifs for all the possible prototiles,
along with two copies exactly covering the entire
domino. The left two prototiles support more than
one Hamiltonian motif. The rightmost two are so
constrained that only one distinct (i.e., ignoring
mirror images) motif is possible.

Almost everywhere linear boundaries. The bor-
ders of these half-domino curves look fractal, but
they’re not. A fractal dimension D can be deter-
mined using the box-counting method. Call Nk

the number of boxes of size 1
nk at stage k needed

to cover the border. If the exponential growth
rate of Nk is greater than the exponential growth
rate of the number of ever-tinier boxes that would
cover a straight line, then D > 1.0 (because the
dimension D is the ratio of the two exponents).
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But with the prototile in Fig. 3, at each recursive stage k the box count Hk covering horizontal portions of
the border increases by a factor of n = 8 while the box size decreases by 8, i.e., there’s no change in total
horizontal length. The vertical count Vk is 8Hk−1 +8Vk−1, because once a vertical length is introduced into
the border, it also remains constant. The border’s growth in length at stage k arises solely from horizontal
segments at stage k− 1 introducing new vertical edges. The total length diverges, but the exponential rate of
growth of total boxes covering the boundary is the same as the rate the boxes decrease in size. Thus, in the
limit, the dimension of the hierarchically self-similar border that divides the two domino halves is just 1.0.
The boundary is not just almost-everywhere linear—it’s almost-everywhere vertical! This is reminiscent of
the Devil’s Staircase (the integral of the Cantor Set) [2], although in the stair’s case, its length is finite.

Digging deeper. Nothing prevents digging out and self-negatively rearranging more sub-squares. One
cannot, however, dig all the way to the bottom of the subdivision—the prototile must stay simply connected
to permit a Hamiltonian path as a motif. But because the motif only needs to travel one way, (red arrows,
either forward or backward), a single bottom row of sub-squares still allows solutions. Figs. 5 and 6 show
two even more towering examples. Due to the thinness of the bottom row, in the limit these half-domino tiles
have cut-points along their bottom edges (remove a cut-point and the tile becomes disconnected).

Figure 5 : Another half-domino space-filling curve, reaching in the left half a height of y = 16 at
a countable number of points, with corresponding cut-points at y = 0 along the bottom right half

In Fig. 6 the motif first rises through a minimally narrow channel comprising pairs of sub-squares (dominos)
that form a tendril, a word borrowed from biology to connote both thinness and growth. Each tendril either
branches into further tendrils or ends at a tip where the motif’s path makes a U-turn. The Hamiltonian path
travels to the tendril’s end or exit, eventually turns around, then travels back through the tendril’s other half.
The initial vertical tendril in Fig. 6 branches into three smaller tendrils (inside the shaded area), like fingers.

Figure 6 : A top-heavy half-domino space-filling curve
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Self-avoiding tendrils. The visual complexity of the boundary of the half-domino space filling curve rises
and falls with the ratio of the prototile’s perimeter length to its interior area. But for a given n the interior area
n2 remains constant. So when every (or the) tendril in a motif is surrounded by space, the ratio is maximized.
Because the tendrils need only reach half of the domino’s sub-squares, there is “wiggle-room” for tendrils to
be self-avoiding. Fig. 7 shows another half-domino curve whose motif is one large self-avoiding tendril, and
two partially adjacent tendrils in the lower right. This motif also shows that a tendril can make turns.

Figure 7 : Top: An almost-single tendril order-8 motif, and its next two space-filling curve ap-
proximations. Bottom: A (sideways) domino “throw rug” built from two congruent half-domino
curves, each filling the background interstices of the other (if PDF, zoom in to see myriad details).

(.75, .25)

Figure 8 : A maximally long, self-avoiding, order-8 tendril motif, approximation stages for k = 1, 2, 3

Fig. 8 shows a wholly self-avoiding, maximally long, single-tendril motif. But something new occurs here.
The limiting space-filling curve, which is a tile, is no longer simply connected—it converges to a gasket. The
green arrow on the right indicates a point of self-contact (at normalized (.75, .25)) that occurs in the limit set.
The path at stage k converges on itself from both below and above to points on, e.g., the lines y = 1/8k−1.
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This “in turn” suggests an infinite series of increasingly tightly wound motifs and their limiting half-domino
tiles, as shown in Fig. 9. For obvious reasons, I’ve nicknamed these paper clip curves. Each approximation
path of the nth motif applied recursively to itself k times remains a self-avoiding path traversing n2k sub-sub-
. . . sub-squares. Holding n constant and letting k→∞, the paths converge to a space-filling curve, which
itself is a bounded area in the plane of size n2 because exactly two copies form congruent halves of an n×2n
domino. Interestingly, if one normalizes the original domino to 1× 2, then each order-n half-domino curve
in this infinite sequence has, by symmetry, area 1. Yet the set to which this infinite sequence of constant-area
objects converges as n→∞, the entire domino, has area 2. Every point inside the domino is approached
by some sequence of points, pn, each point itself a member of the area converged to by the nth paper clip
curve. All the equal positive and negative space becomes infinitely thin. Then, in the limit, the negative
space vanishes just as the positive space reaches every point of the domino.

n = 4 8 12 16 20 24

Figure 9 : Top: First through sixth motifs (k = 1) of an infinite sequence of paper-clip curves.
Bottom: The next (k = 2) recursive stage (if PDF, zoom in for details).

Branching motifs. If we allow tendrils to branch, many more solutions become possible. As the order n
increases there is a combinatorial explosion of motifs, albeit still constrained to be self-negative with respect
to the domino’s center, as Fig. 10 shows.

Figure 10 : A branching half-domino curve motif, and its next two recursive approximation stages
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The yin and yang beauty of half-domino tendril curves. The leap in the size of the solution space means
one can explore it and make æsthetic decisions on elegance of form, what that form is reminiscent of, and
all the other aspects of what a piece of art/design, as a human choice, communicates. For instance, my piece
“A Unit Domino” (Bridges 2015 art show) is based on a minimally branching, double-spiral order-60 motif.

Fig. 11 shows the result of applying the order-12 motif of Fig. 0 to itself recursively (there are exactly 122

connected copies), with a mated pair of half-domino curve approximations creating a design reminiscent,
perhaps, of a Persian doorway or the map of an intimate self-similar souk with many inner sanctums, or
an Arabian (magic) carpet. The stringent tendril self-avoidance constraint has been relaxed so as to fill
larger areas, preventing convergence to a gasket. The resulting pattern is more pleasing to the eye than usual
because of a balance and tension between symmetry and asymmetry. It has a more soft and less frenetic
feeling with respect to the border’s visual complexity, which is relegated to the domino’s interior by the
mated pair. All repeated motifs pointing upward are self-negative w/r/t those pointing downward. This
enables the two halves to mesh at every recursive level. There is a nice balance between clean vertical
linearity and convoluted horizontal complexity, even though there is recursive self-similarity throughout.

Figure 11 : Left: Second approximation of the motif in Figure 0. Right: A pair of them covering a domino.
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Using computer backtrack search techniques, I have enumerated over 40,000 non-branching tendril motifs—
nearly all partially self-avoiding and self-contacting—for the order-12 subdivision of the domino. Each is a
unique Hamiltonian solution for some prototile, but the prototile boundaries tend to be very duplicative—
there are far fewer unique self-negative boundaries. Further work using a different enumeration strategy will
help cull these duplicates, perhaps permitting productive searches of higher orders of n. I have examined
about half of these order-12 motifs, looking for forms that I find to be elegant, intriguing, balanced, etc.
Fig. 12 shows two such self-negative designs, both for k = 2, based on using two dominos (four half-
dominos) to fill a square. The pattern on the left reminds me of Native American Zuni rug weaving patterns.

It’s pleasantly remarkable that measure theory and the study of the continuum might bear on æsthetics!

Figure 12 : Using pairs of self-negative, order-12, half-domino curves—drawn with lines the
same thickness as sub-squares so as to hide the actual paths—to color in prototiles at stage k = 2

Conclusions. As the subdivision order n increases, a combinatorial space for self-negatively constrained,
space-filling half-domino curve motifs and their prototiles opens its doors. Within that space, one can explore
for patterns using æsthetic considerations such as elegance of form, balance, beauty, visual reference and
meaning, or other criteria. And not every infinitely long and infinitely detailed, finitely bounded, self-similar,
and infinitely zoomable object is (technically speaking) a fractal.
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