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 Abstract 
 

It puzzles many that cubic surfaces, discovered and classified more than a hundred years ago, are still very present 
in mathematical studies today. This presentation briefly reviews the theory and principle of these particular surfaces 
and submits that recent developments in computer-aided technology may be consequential in the renewed interest 
of scientists, engineers as well as artists for this area of study. Using recent sophisticated mathematical visualization 
programs, I investigate the Cayley cubic and explore its surface in a visual art context to highlight the close 
connectivity between pure mathematics and our larger aesthetic environment. 

 
 

 Introduction 
 

The Cayley cubic in its original form has been the object of many studies since it was first presented to 
the Royal Society of London in 1869. An impressive amount of papers continues to be published today on 
cubic surfaces and Del Mezzo surfaces. In the word of A. Henderson “While it is doubtless true that the 
classification of cubic surfaces is complete, the number of papers dealing with these surfaces which 
continue to appear from year to year furnish abundant proof of the fact that they still possess much the 
same fascination as they did in the days of the discovery of the twenty-seven lines upon the cubic 
surface.” [1]. 

The appeal of the problem relating to cubic surface may be dual. First it calls for challenging and 
elegant demonstrations of mathematical reasoning and second the recent development in computer-aided 
technology allows for more exact and precise projection than the plaster models that were used at the turn 
of the nineteen century to demonstrate those projections. In the following presentation, I focus primarily 
on the Cayley cubic surface and fast-forward to our modern environment to explore the surface with a 
mathematical visualization program called SURFER to look at the outcome from a graphic and aesthetic 
perspective. 

 
The Cayley cubic 

 

 
 

Figure 1: 3D-XplorMath –The Cayley cubic 
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Arthur Cayley was a 19th century British mathematician who produced a huge body of work. He 
published over 900 papers and more than fifty concepts and theorems of mathematics that covered almost 
every aspect of modern mathematics. He united projective geometry and metrical geometry, which is 
dependent on sizes of angles and lengths of lines [2]. 

In algebraic geometry, the Cayley surface is a unique cubic surface in 3-dimensional projective space 
with four conical, or ordinary double points, the maximum possible for cubic surface (Fig.1). Arthur 
Cayley and mathematician George Salmon collaborated on defining the maximum finite number a cubic 
surface contains. They wrote a significant paper demonstrating that, based on Salmon’ proof relating to 
the invariant of a cubic, the number of lines in this type of surface must be equal to 27, and that 45 tri-
tangent planes, represented by three mutually intersecting lines, intersect the surface. The discovery of the 
27 lines on a cubic surface identify the first non-trivial result on algebraic surfaces of order higher than 2 
[3].  

In graphical or projective perspective, parallel lines intersect at a vanishing point [4]. Cubic surfaces 
are implicit, polynomial surfaces in projective three-space with terms of degree three or less [5]. Swiss 
mathematician L. Schlafli was the first to classify the various types of singularities following the 27 
points Cayley-Salmon cubic surface theorem [6]. In 1871, Clebsch gave a model of a cubic surface, called 
the Clebsch diagonal surface, where all the 27 lines are defined over a set field and can be identified with 
objects or vectors arising in representation theory. 

Interest in this very abstract topic declined until computer-aided technology allowed the transfer of 
mathematical calculation into precise, effective visualization. Holt-Netravali and Mundy-Zisserman 
pointed out in that computer vision, it is essential to derive properties of curves and surfaces that are 
invariant to perspective projection and to be able to compute these invariants reliably from perspective 
image intensity data [7]. 
 
 

 The SURFER program 
 
The SURFER program was developed to respond to these specifications. It has become an invaluable tool 
in the digital environment for scholars, educator, artists and all that do not have the technical background 
and expertise of mathematicians and engineers to convert pure mathematics into beautiful visualizations. 

Surfer, a Java-based extension of the program SURFER2008 was developed as joint project of the 
MFO (Mathematisches Forschungsinstitut Oberwolfach) and the Technical University of Kaiserslautern 
[8]. It is today part of the MFO-IMAGINARY traveling exhibit, a very successful program of promotion 
of Mathematics. 

Its origin can be found in the programs Surf and Spicy that were projects of the research group 
Algebraic Geometry at the Department of Mathematics of the Johannes Gutenberg-Universität at Mainz 
(Germany) under the direction of Stephan Endrass [9]. Surf was designed to visualize algebraic curves 
and surfaces by writing scripts to allow the program to execute them in the user interface. The program 
was designed to work with one default equation and allow the user to alter all parameters until a final 
image could be completed. Each high-resolution surface and curves can be saved and imported into most 
existing graphic applications. 
 
 

 Cayley cubic and SURFER 
 
The visualization of the Cayley cubic in the SURFER program is initially set to a default equation 
designed by German mathematician Felix Klein: 
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 My interest in using it was to generate interesting shapes using several variations the program was 
allowing (Fig. 2).  
 

   
 

Figure 2: SURFER – Cayley cubic variation 
 
The program draws algebraic surfaces produced by simple equations. The shape can be rotated, reduced 
or enlarged and there is a possibility to change the object colors. I did not use the color tool at the early 
stage wanting to concentrate on the object shape and appearance. The first challenge I had was to extract 
a coherent figure that would look good on a 2D surface. There are elements of perspective and symmetry 
in the projection onto a plane that require careful positioning to convey properly the particular dynamic 
and balance of a two-dimensional surface representation. 

I transferred the shape I selected into a graphic program that had more sophisticated tools to deal 
with the specific of graphics composition [10]. I added density to the pixels in some areas to increase the 
perception of depth, created additional shadows and added more nuanced colors to bring up a form both 
mathematically correct and that could relate to an abstract sculpture or an antique artifact of some kind, 
which is not surprising as many ancient cultures intuitively were using geometry to define shapes and 
express perfection (Fig. 3). 
 

 
 

Figure 3: The Minotaur. Minoan figurehead 
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Conclusion 
 
This project highlighted several points that are very relevant to collaboration between Mathematics and 
the visual arts. Pure mathematics is a very challenging field and abstract thinking is in itself an amazing 
form of expression. For centuries, most of the brilliant and complex demonstrations in this area were 
based on a few approximate plaster models, tentative at best in reflecting the complexity of the reasoning. 
Computer-aided visualization in scientific and mathematical visualization has brought a novel element in 
the concretization of ideas and theories. It has helped refine and clarify complex calculation. It has also 
provided researchers and audiences with a precise and accurate tool to understand both the outcome and 
the process leading to elaborate visual statements. Today, computer technology permeates all fields of 
research, whether in science, art, or visual communication. It complements the various technical 
requirements needed in each discipline and has also become a stepping stone in the creation of better and 
more effective communication. 
 The work I did on cubic surfaces was part of a larger ongoing project–the 12-30 project [11] focused 
on testing math-visualization programs in a graphic environment. In the course of the particular research 
for this project, I read a very instructive review [12] of a treatise written by A. Cayley on the four-color 
map problem. It was not unusual at that time for scientist to look into the physiological aspect of the art-
making process as Newton, Fourrier and many others did.  For Cayley, color was much more than a 
cosmetic device. It could be used for achieving clarity, making new discoveries and suggesting valuable 
ideas. It will be indeed a challenging direction for future work to revisit the Cayley cubic and other 
mathematical surfaces in various visual environments and according to the very color principles 
investigated by Cayley himself, back in the mid-1800s.  
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