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Abstract 
 

This paper describes a 12-note musical scale generated from the ratio of consecutive prime numbers that is used as 
the basis for the author’s electronic composition The Music of the Primes. The scale is a type of extended just 
intonation, a tuning system whose intervals are derived from the harmonic (overtone) series and uses partials above 
the first six partials. The ratio of consecutive primes sequence makes a potentially infinite number of prime ratios 
available to the composer. 

 
Introduction 

 
The Music of the Primes is an electronic musical composition by the author [1] that was inspired by 
mathematician Marcus du Sautoy’s book of the same title [2]. It is a computer-generated algorithmic 
composition encoded in Cycling ‘74’s Max visual programming language [3]. All of the composition’s 
musical parameters involve prime numbers [4]. The composer’s main aesthetic goal was to saturate the 
pitch and rhythmic domains with perceivable prime number proportions that over the course of the work 
become gradually more complex as higher order primes are explored. In that sense, it is a musical 
exploration of the spacing of prime numbers. This paper focuses on a mathematical description of the 
musical scale on which the piece is based. The scale is related to the class of tuning systems called 
extended just intonation [5]. In such systems, all of the intervals are derived from the harmonic (overtone) 
series and thus may be exactly specified using whole-number ratios. The word extended refers to the use 
of partials above the first six partials. The music and intonations of twentieth-century American 
composers Harry Partch, Ben Johnson, La Monte Young, and James Tenney, among others, have served 
as inspirations for this work. 
 

Prime Numbers 
 
A positive integer p is prime if p > 1 and its only divisors are 1 and p. A positive integer greater than 1 
that is not prime is said to be composite. The prime sequence begins 
 

 
 
and we denote the nth prime number as pn: i.e., p1 = 2, p2 = 3, p3 = 5, … [6]. The difference between two 
consecutive prime numbers gn, called a prime gap, is defined as: 
 

 
 
The prime gap sequence is defined as: 
 

 
 
We mention the prime gap sequence here because it plays a central role in the rhythmic structure of the 
work. The pitch domain, however, is exclusively derived from the ratio of consecutive primes. 
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For n ≥1, we define the ratio of consecutive primes qn as: 
 

 
 

We define the ratio of consecutive primes sequence as: 
 

 
 

Just (5-limit) Intonation vs. Equal Temperament 
 
A just (5-limit) intonation is defined as a tuning system whose pitches may be represented as 2! ⋅ 3! ⋅ 5!, 
where p, q and r are integers. For example, the 7 notes of a traditional diatonic scale on C are represented 
using 5-limit ratios in Figure 1. 
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Figure 1:  A just (5-limit) tuning of a diatonic scale on C. 

 
This intonation utilizes “pure” ratios found in the lower part of the harmonic (overtone) series. A common 
way to extend this 5-limit system to include the 12 notes of a chromatic scale on C is shown in Figure 2 
[7]: 
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Figure 2:  A just (5-limit) tuning of a chromatic scale on C. 
 
In general, if p is prime, a p-limit scale uses ratios involving numerators and denominators that are 
products of primes ≤ p [8]. The reader who requires a primer explaining how notes and intervals are 
traditionally represented in tuning theory is referred to Kyle Gann’s article “Just Intonation Explained” 
[9].  
 
 The cent is a logarithmic unit of pitch interval. The size of an interval in cents (c) may be obtained 
from a ratio as follows [10]: 
 

 
 
By definition there are 1200 cents in an octave. In 12-tone equal temperament (12tet), a commonly 
accepted standard for tuning a modern piano, there are 100 cents in each semitone. Equivalently, 1 cent is 
1/100 of a 12tet semitone. Cents make the comparison of interval sizes a simple matter. In this paper, all 
cent values are rounded to the nearest cent to simplify the comparisons. Readers who require cent values 
to 3 decimal places may use the formula above, or may consult Kyle Gann’s lexicon of 700 pitches within 
the octave titled “Anatomy of an Octave” [11]. The size of the 12tet semitone is based on the irrational 
number 2!" = 2

!
!" ≈ 1.059. For comparison with Figure 2, Figure 3 shows the 12 notes of a 12tet chromatic 

scale using cents and ratios expressed as simplified powers of 2. 
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Note C Cƒ/Dß D Dƒ/Eß E F Fƒ/Gß G Gƒ/Aß A Aƒ/Bß B (C) 
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Figure 3: A modern piano tuning (12tet). 

 
The Ratio of Consecutive Primes Scale 

 
To create an octave-based scale using the ratio of consecutive primes, we partition the octave (2/1) into 
discrete notes using qn as a generator. This process is shown in Figure 4. 
 

Note  𝑞! 𝑞! 𝑞! 𝑞! 𝑞! 𝑞! 𝑞! 𝑞! 𝑞! ...  
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Figure 4:  Notes derived from the ratio of consecutive primes. 

 
As Euclid proved, an infinite number of primes exist. Therefore qn can theoretically generate an infinite 
number of notes. Arranging the ratios in Figure 4 in ascending scalar order yields Figure 5. 
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Figure 5:  Notes q1–q9 arranged in ascending scalar order. 
 
Each note in Figure 5 is specified using three equivalent representations: (1) as a frequency ratio f2/f1 
relative to the reference pitch 1/1; (2) as a decimal expansion rounded to three decimal places; and  
(3) using cents.  
 
 Figure 6 shows the tuning specification for The Music of The Primes. 
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Figure 6: The Music of the Primes tuning specification. 

 
All of the notes in this scale may be represented as 
 

 
 
where a–j are integers. Thus it meets our earlier definition of a just (p-limit) intonation with p = 29. The 
work’s reference pitch Eß4 (C4 is middle C) is approximately 311.1 Hz. The tonic note Eß is assigned to 
the reference pitch 1/1. Octave-related pitches are obtained by multiplying by 2n, where n is an integer. 
Traditional musical letter names are strategically assigned to the other notes of the scale to balance both 
musical and mathematical concerns. Notice that Figure 6 adds two new ratios to Figure 5: 23/13 and 13/7. 
These ratios fill the 6/5 gap between 5/3 and 2/1. Higher order qn (i.e., n > 9) were considered, but were 
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ultimately rejected by the composer due to an aesthetic preference for the sonic signatures of 23/13 and 
13/7, and a desire to stay within the 29-limit.  
 
 To give the reader some impression of how the ratio of consecutive primes (ROCP) sequence is used 
to create melodies and harmonies, the first 2:25 of the work is briefly described as follows. Section A 
(0:55–1:37) introduces the work’s main theme: Eß (1/1), Bß (3/2), C (5/3). Presented over a Eß–Bß (3/2) 
harmonic drone, the main theme is repeated and then extended by a single note to include the note A 
(7/5). Section A concludes with the progression Eß–Bß (3/2) moving to Bß–Fƒ (52/33 = 13/11 ⋅ 2/1 ⋅ 2/3) 
and returning to Eß–Bß (3/2) again. The intervals Eß–Bß and Bß–Fƒ may also be found in the work’s 
introduction (0:00–0:55). After these two intervals are stated at the outset of the work, the Bß–Fƒ (52/33) 
interval is transformed into Bß–Gß (23/19), and then the introduction comes to rest on a tonic Eß major 
harmony with a 29/23 major third. The main theme returns in the B section (1:37–2:25), this time in a 
new octave. The main theme is then extended to include the notes: B (11/7), Fƒ (13/11), Aß (17/13) and F 
(19/17). A summary of the melodic notes presented over the course of the A & B sections unveils the 
ROCP sequence segment: 3/2, 5/3, 7/5, 11/7, 13/11, 17/13, 19/17.  
 

Concluding Remarks 
 
The scale in Figure 6 features a number of interesting and rare intervals. Except for the relatively common 
just 3/2 perfect fifth, 5/3 major sixth, 7/5 septimal tritone, and 11/7 undecimal minor sixth (or augmented 
fifth), most of the intervals remain unnamed in Gann’s lexicon [see 11]. Rare intervals include the 
hauntingly intoxicating 17/13 “perfect fourth”, the 29/23 major third (which is exceptionally close to its 
12tet counterpart), and exquisitely beautiful 19/17 whole tone. The ratios 13/11 and 23/19 form a 
wonderfully ambiguous interval pairing rife with musical implications. The non-adjacent prime ratios 
23/13 and 13/7 complete the system and offer interesting possibilities for harmonization, seventh-degree 
resolution, and modulation that are all exploited in the The Music of the Primes. 
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