Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture

Self-Avoiding Random Walks Yielding Labyrinths

Gary R. Greenfield
Department of Mathematics & Computer Science
University of Richmond
Richmond, VA 23173, USA
ggreenfi @richmond.edu

Abstract

We modify a self-avoiding random walk model based on curvature by Chappell. This will lead us to the discovery
of autonomously constructed drawings that often yield labyrinths. Labyrinth formation occurs when the sensing and
avoiding feedback loop that modulates curvature promotes curve following. We add rendering effects in order to
stylize our labyrinths and visualize certain aspects of our self-avoiding random walk behavior.

Introduction

Points that execute self-avoiding walks occur in the physics and chemistry literature because of their appli-
cation to protein folding and other polymer-related problems [8]. Such self-avoiding walks are often imple-
mented using lattices [11], and in this case it is known that there are algorithms for infinite self-avoiding
walks [6]. In order to generate smooth self-avoiding random walks, Chappell introduced a model for random
walks in the plane that depends on curvature [3]. By incorporating rules based on readings from sensory
apparatus — two sets of “feelers” attached to the point executing the walk — and adding rendering effects
to the curve the point traces, Chappell generated many examples of drawings of points executing prolonged
self-avoiding and self-following walks. In an effort to reverse-engineer certain aspects of the model Chappell
implemented, we also developed a self-avoiding random walk model based on curvature, but one which to
our surprise often produced labyrinths. In this paper we provide background and details as well as some
labyrinth examples.

Chappell’s Method

The random walk algorithm based on curvature introduced by Chappell [3] is parametrized by arc length
s. This means the smooth curve the point traces while executing the random walk is approximated by
successively drawing very short line segments of length As. Assume after traveling a distance s, the point
has tangential angle (i.e., heading) 0(s), curvature x(s) and position (x(s), y(s)). To determine the position
of the point when the curve length is s + As first update the curvature and heading values using:

k(s+ As) = k(s)+ koX(s),
O(s+As) = 0(s)+ k(s + As)As,

where X (s) is a stochastic random variable assuming values +1 and —1 and k is a “small” constant. Then
determine the new position by letting:

z(s+ As) = xz(s)+ cos(0(s + As))As,
y(s+ As) = y(s)+sin(f(s + As))As.

247

Greenfield

The example Chappell gives of the random walk produced using his model is shown in Figure 1. However,
because the only update formula for 6 that ever appears in his paper is:

0(s + As) = (1 —n)0rc +1(0(s') +),

we can not be sure if the simplified version we have given here for the 6 update should omit As as a multiplier
or, possibly, use some other scale factor. Before returning to this question, consider Chappell’s description
of how he obtains a self-avoiding walk (SAW):

To generate a self-avoiding curve, I place “antennae” on the moving point that sense when the
path is about to be crossed. ...If the left antenna crosses the path, then the point executes a 180°
reversing turn to the right. If the right antenna crosses the path, then it reverses direction by
turning to the left. Reversing turns are followed to completion and are not interrupted or modified
if one of the antennae strikes the curve again, although a second set of antennae described below
can override the turn. The radius and angle of the reversing turn are each held constant to provide
a unifying visual motif throughout the design. The walk is terminated when the the self-avoiding
rule fails and the point collides with its path.

In order to reduce the likelihood of the walk becoming trapped, the point is given a second set
of smaller antennae that can override the longer antennae when more immediate dangers are
detected. For example, if the walker is executing a reversing turn to the left and the the left
overriding antenna touches the path, then a new reversing turn to the right is initiated, overriding
the original turn. ...

On each step of a SAW, the antennae must search the path for possible collisions. In an exhaustive
search, the number of computations required to generate a SAW with N steps scales as N2. ...

Although the description is not fully fleshed out, this excerpt motivates Chappell’s example of the self-
avoiding random walk shown in Figure 2.

Figure 1: Chappell’s example of a random walk using a model based on curvature and
parametrized by arc length. Printed with permission.

~~
/e
/
‘\ (;\\ /
" | \
D | £
[l | [
:)
U ’ o
ey
// = </)

Figure 2 : Chappell’s example of a self-avoiding random walk. Printed with permission.

The reason Chappell uses such a complicated update formula for 6 is to obtain a parametrized family of
self-avoiding and self-following walks. Again, quoting:

248

Self-Avoiding Random Walks Yielding Labyrinths

Orc is the tangential angle produced by random-curvature motion, ¢ = 0 or 7 depending on
whether the point follows the path “upstream” or “downstream,” and the parameter € [0, 1]
controls the contribution of random motions. When 7 = 0, the point follows a random-curvature
walk and is not influenced by the presence of its path. When n = 1, the point is “pinned” to the
curve it is following.

We refer readers to Chappell’s paper for further examples. Unfortunately, this description was too compli-
cated to reverse engineer (see [3] for the definition of s’), and since several parameters for the model were
not explicitly given and we wished to avoid searching a stored list containing every point previously visited
in order to detect curve contact, we were forced to simplify and resort to our own devices. Our original goal
was to develop a platform for simultaneously executing multiple self-avoiding random walks. While repro-
ducing random walks similar to the one in Figure 1 was easy, it turned out that the incessant parameter tuning
and never ending design modifications we labored over in order to try and keep self-avoiding random walks
from prematurely terminating diverted us from our original goal, and instead led to a sequence of parameter
settings and a design that, to our surprise, was capable of yielding autonomously constructed labyrinths. This
is the model we give the details for below.

Our Method

We chose an update increment of As = 0.4 so that it takes multiple updates in order for a point to cross an
underlying pixel of a w x h pixel canvas corresponding to the [w, 0] x [0, h] region of the plane where the
point is executing its walk. In this way pixels can be “time-stamped” with the times (really update iteration
counts) they were visited as well as the curvature and heading values they were using when those events
occurred. Thus a point’s feelers can examine pixels they come in contact with to see whether the point
executing the random walk has previously visited them or not. The pixels at the boundary of the region are
marked with a time-stamp of zero so the point will also be able to avoid them. These boundary pixels are
given a visited curvature value of zero to reflect the fact that the boundaries are straight line segments.

The point starts out in the center (w/2, h/2) of the region of interest with an initial heading 6(0) = 0
so that it is headed in the positive x direction and an initial curvature x(0) = 0.02. It moves until either it
is halted or 86,250 As updates have occurred. If it is not in the midst of what we call either “turning” or
“veering”, then every thirteenth As update the curvature is modified by setting:

k(s + As) = k(s) + koY (s),

where ko = 0.02 and Y'(s) is a random number in the interval [0, 1], otherwise (s + As) = k(s). The
reason for spreading out the curvature updates is to allow the point time to draw a visible curve segment
using each new value. When a turn or a veer completes, the curvature is reset using:

k(s + As) = —k(8)/3 + ki/2 + koY (s),

where k; is a curvature value that was saved when the veer or turn commenced and x(and Y (s) are as before.
Except for the first five As updates of a veer or turn, where the curvature remains fixed in order to allow the
turn or veer to gain a foothold, after every As update the point senses to see if any avoidance measures are
called for. This is done in two stages. First, sensory data from the point’s antennae which consist of two
feelers located 15° to either side of the point’s heading and extending out for twenty units are considered.
Second, a sensory field extended out in all directions to nearby pixels is considered.

The antennae can return sensory data from a distance five units away from the point out to twenty units
away from the point. If the first pixel encountered that is marked as previously visited is sensed within seven

249

Greenfield

units of the point, the point halts because the walk has somehow gotten too close to a previously drawn part
of the curve; if it is within fifteen units of the point, assuming a veer is not already in progress, it initiates
a veer; otherwise, assuming a turn is not already in progress, it initiates a turn. To initiate a turn, the point
saves the current curvature value k(s) to x; and sets k(s + As) = £0.15 where the sign chosen is opposite
to that of the current value. Initiating a veer is more complicated because a turn may already be in progress!
If a turn is in progress, whence there is already a saved value of curvature, the turn is canceled and the
curvature is set so that k(s + As) = £0.45 where the sign chosen matches that of the current value. If a
turn is not in progress, the point saves the sensed value of the curvature to s+ and the curvature is set so that
k(s + As) = £0.45 where the sign chosen is opposite to that of the sensed value. Turns complete after
twenty-five As updates, veers after twenty.

The rationale for antennae is to detect the previously drawn curve in time to complete a gentle turn
by turning away without intersecting it, but with the understanding that it may be necessary to increase the
rate of turn (and try to follow along parallel to a previously drawn part of the curve) if the point still gets
too close or otherwise encounters the curve at an odd angle. That being said, previously drawn parts of the
curve can still be dangerously close to the point without being detected by antennae. Thus, in the second
stage a sensory field extending throughout a 15 x 15 unit neighborhood of the point is invoked to search for
previously drawn parts of the curve. Again, if a visited pixel is encountered within seven units the point is
halted because it is deemed too close to allow the point to proceed. However, because the neighborhood is
rectangular, rarely, a visited pixel may be encountered that is further away than that but in an odd location
relative to the antennae. In this case one final evasive maneuver is attempted. The heading is changed so that
0(s + As) = 0(s) = 7/10 where the sign is chosen to match that of the heading value saved at the sensed
pixel.

Figure 3 : Four examples of self-avoiding random walks on a 600 x 500 pixel canvas exhibiting
the different types of “behavior” that can arise.

Before giving higher resolution examples with added rendering effects that yielded labyrinths, we con-
sider some lower resolution examples to help illustrate why it takes so much effort to induce an autonomous,
self-avoiding walk using our self-avoidance curvature model. Figure 3 shows four examples of self-avoiding

250

Self-Avoiding Random Walks Yielding Labyrinths

walks executed on a 600 x 500 pixel canvas. They indicate that most often the walk is terminated because the
point approaches a previously drawn section (or the boundary) by quickly curling back towards it and facing
it almost head on. The exception is the drawing at the lower right where the point approaches a previous
section almost parallel to it but still too close.

Labyrinth Examples

It would be sheer folly to try and survey the literature on mazes and labyrinths. Just to give an inkling of
what has appeared recently in the mathematics and art literature, we cite an ongoing series of papers by
Verbiese (the latest being [12]), tiling related work by Bosch et al. [1], visual mathematics related work by
Fenyvesi et al. [4], and an artist’s tie-in with the Jordan curve theorem by Ross and Ross [10]. Similarly, the
non-photorealistic rendering literature is rife with examples [2] [9].

As our preliminary tests indicated, in some instances when the self-avoiding random walk is able to
continue long enough, but halted before it reaches the boundary, the point will spiral out from the center
and form a labyrinth. To generate further examples we enlarged the canvas to 1000 x 1000 pixels, extended
the length of the antennae to forty units to get better separation between curve elements, and added render-
ing effects by thickening the curve and “feathering” it. Feathering was accomplished by drawing normals
extending out from the curve after every few As updates whose length was proportional to the curvature.
Successive positions of the point were used to construct a vector approximating the tangent vector to the
curve whose perpendicular vector then provided the normal vector to the curve. Figure 4 gives two exam-
ples. We observe that longer antennae make it easier for the curve to reverse direction. This is evidenced by
focusing on the thinnest sections of the curve where the point is wandering “freely’” not subject to turning or
veering.

Figure 4: Digital prints, 10” x 107, 2014. Left: SA Labyrinth #5223. Right: SA Labyrinth
#8352. Copyright Gary Greenfield.

251

Greenfield

Future Work

The rationale for using a random-walk model based on curvature is to draw smooth curves. To add self-
avoidance the problem becomes to detect contact with the curve in time to turn in an appropriate direction.
We are still interested in multiple points executing self-avoiding random walks while simultaneously avoid-
ing each other. This is problematic using only two sets of antennae as Chappell does, or one set of antennae
and a sensing field as we have done. However, we have been able to use our curvature set-up to make draw-
ings where multiple points avoid each other but not themselves [5]. To add self-avoidance in this instance, it
may be necessary to design sensory apparatus that can detect curve contact via a sensory field extending over
an arc, or use sets of non-uniform, asymmetric feelers in a manner similar to the way Machado and Pereira
have for their artificial ants [7].

References

[1] Bosch, R., Fries, S., Puligandla, M. and Ressler, K., From path-segment tiles to loops and labyrinths, in
Bridges 2013 Conference Proceedings. G. Hart et al., eds., Tessellations Publishing, Phoenix, AZ, 2013,
pp- 119-126.

[2] Bosch, R., Chartier, T. and Rowan, M., Minimalist approaches to figurative maze design, preprint.

[3] Chappell, D., Taking a point for a walk: pattern formation with self-interacting curves, in Bridges 2014
Conference Proceedings. G. Greenfield et al., eds., Tessellations Publishing, Phoenix, AZ, 2014, pp.
337-340.

[4] Fenyvesi, K., Jablan, S. and Radovi¢, L., Following the footsteps of Daedelus: labyrinth studies meets
visual mathematics, in Bridges 2013 Conference Proceedings. G. Hart et al., eds., Tessellations Publish-
ing, Phoenix, AZ, 2013, pp. 361-368.

[5] Greenfield, G., Avoidance drawings evolved using virtual drawing robots, in Proceedings EvoMUSART
2015, A. Carballal, C. Johnson, and J. Nuno, eds., Springer-Verlag, Berlin, 2015, in press.

[6] Kremer, K. and Lyklema, J., Infinitely growing self-avoiding walk, Phys. Rev. Lett., 54, 1985, pp. 267-
2609.

[7] Machado, P. and Pereira, L., Photogrowth: non-photorealistic renderings through ant paintings, in Pro-
ceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Confer-
ence Companion — GECCO 2012, T. Soule, ed., ACM, Press, New York, NY, 2012, pp. 233-240.

[8] Madras, N. and Slade, G., The Self-Avoiding Walk, BirkHauser, Boston, MA, 1993.

[9] Pedersen, H. and Singh. K., Organic labyrinths and mazes, in NPAR ’06 Proceedings of the 4th inter-
national symposium on non-photorealistic animation and rendering, ACM Press, New York, NY, 2006,
pp- 79-86.

[10] Ross, F. and Ross, W., The Jordan curve theorem is non-trivial, Journal of Mathematics and the Arts,
5:4,2011, pp. 213-219.

[11] Vanderzande, C., Lattice Models of Polymers, Cambridge University Press, New York, NY, 1998.

[12] Verbiese, S., Amazing labyrinths, further developments IV, in Bridges 2014 Conference Proceedings.
G. Greenfield et al., eds., Tessellations Publishing, Phoenix, AZ, 2014, pp. 483—484.

252

