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 Abstract 
 

The Platonic Solids: a Three-Dimensional Textbook is an exhibit in the 2015 Bridges conference that includes 
geometric sculptures, depicting the geometric relationships between the five Platonic solids, as well as extensive 
text explaining and developing those geometric ideas.  The Platonic solids serve as a very accessible vehicle for 
introducing ideas from projective geometry and group theory.  It is fitting to depict beautiful mathematical ideas 
with beautifully crafted models.  It is hoped that others will in the future be inspired to make “three-dimensional 
textbooks” for other topics in geometry. 

 
 

 Introduction 
 

The Platonic Solids: a Three-Dimensional Textbook is an exhibit in the 2015 Bridges conference. The 
richness of ideas found in the Platonic Solids gives a wonderful example of the beauty to be found in 
mathematical thought.  A geometry textbook typically develops the ideas with text and two-dimensional 
drawings.  However, three-dimensional geometry is most effectively presented in three dimensions.  So, 
this “textbook” gives a systematic development of geometric ideas, but does so through a series of more 
than thirty 3D sculptures with explanatory signs.  The beautiful sculptures give a fitting expression to the 
beauty of the mathematical ideas -- a bridge between sculpture and mathematics. 
 
The intended audience for the exhibit is anyone who has studied a little high school algebra and geometry, 
but someone with no mathematical background should find it quite accessible, while those with a 
sophisticated mathematical background will likely find there some delightful surprises.  This paper 
summarizes the content of the exhibit; it assumes that the reader has some familiarity with some of the 
polyhedral forms ([3],[4],[6]) and basic projective geometry ([2]), perhaps from having gone through the 
exhibit.  It is hoped that the exhibit and this paper will encourage others to use the Platonic solids as a 
way to introduce in a very concrete way some abstract mathematical concepts, and perhaps it will also 
encourage others to create 3D textbooks for other topics in mathematics. 
 
 

Imagination in Mathematics and Art 
 
Mathematics is an art form.  It is an art form in which the medium is pure thought.  It is unlike other art 
forms in that other forms find their expression in physical material.  Perhaps we should describe Bridges 
as an organization dedicated to making connections between mathematics and other arts.  In any case, we 
should not be surprised that we so readily find many connections between mathematics and other arts.   
 
Art stimulates inner activity.  The sculptures in this collection do so by calling upon the viewer to 
inwardly form images and visualize forms in movement, to see in the mind what is suggested by, but is 
not physically present in, the pieces.  There is a multitude of dynamic movement both within each 

Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture

113



sculpture and between the sculptures.  That interaction with the viewer engages one in the choreography 
of these movements. 
 
The viewer will find it interesting to look at the shadows cast by the pieces.  Also, if one moves about, 
viewing the pieces from different perspectives, various lines and points will suddenly line up, giving quite 
stunning views; try this also with one eye closed. 
 
 

The Convex Regular Solids 
 
In ancient Greece, it was already proved by Euclid that the five figures, known as the Platonic solids, 
exist and are the only convex regular polyhedra.  Also Plato discussed their symbolic significance in 
Timaeus [4].  A table, showing the number of vertices, edges, and faces of each of them, is displayed in 
the exhibit.  It reveals a pairing of the octahedron and cube with the role of vertices and faces 
interchanged, and likewise for the icosahedron and dodecahedron.  We can understand this better in the 
context of projective geometry. 
 

The Infinitely Distant and Duality in Projective Geometry 
 
A plane, P, intersects a second plane, Q, in a line, q.   As plane P moves about in space, the line q moves 
about on plane Q.  As plane P comes close to being parallel to plane Q, line q moves far away.  At the 
moment when P becomes what Euclid would have called “parallel” to Q, Euclidean geometry says that 
there is no longer a line of intersection; q disappears.  However in projective geometry, one includes an 
infinitely distant line on every plane; so the line q is still there, only infinitely distant.  As a result there is 
a principle of duality in projective geometry (which is lacking in Euclidean geometry); any two points 
have a common line and any two planes have a common line.  In three dimensional projective geometry, 
interchanging the words “point” and “plane” converts any true statement to another true statement.   
 

Polarity in Projective Geometry  
 
The principle of duality interchanges the words “point” and “plane” in any general statement, but it 
doesn’t associate to a point any particular plane.  That’s done by a polarity.  A polarity pairs each point in 
space to a plane in such a way that incidence is preserved; if a point lies on a plane, the polar plane and 
point lie on each other.  It follows that as a point moves along a line, the polar plane must rotate around 
another line; thus each line has a polar line.  An example of a polarity associates to each point with 
homogeneous coordinates, (a, b, c, d), the plane with equation ax + by + cz  - dw = 0.  Then each point on 
the unit sphere has for its polar the plane tangent to the unit sphere at that point.  The polar of the sphere’s 
center point is the plane at infinity.  As a point moves toward the center of the unit sphere, the polar plane 
moves out to infinity and conversely.  Once a polarity is chosen, every polyhedron has a polar 
polyhedron.  From now on we will use “polarity” to mean this particular polarity, and we will call the unit 
sphere “the sphere of polarity”. 
 

Polars of the Platonic Solids 
 
Using this polarity, one sees that the cube and octahedron are polar to one another.   The vertices of the 
cube line up radially with the centers of the faces of the octahedron and vice-versa, while the midpoints of 
the edges of the cube line up radially with the midpoints of the edges of the octahedron.  Making the cube 
smaller relative to the sphere of polarity makes the polar octahedron larger and vice-versa.  By varying 
the relative sizes of the cube and polar octahedron, one finds many interesting relations.  In the two 
models displayed in the exhibit, the aluminum cube and brass octahedron have been chosen with relative 
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sizes so that they can be suspended from one another with strings, the strings forming a dodecahedron in 
one model and an icosahedron in the other.  Some of the vertices of the string dodecahedron lie on 
vertices of the cube, while its other vertices lie on edges of the octahedron; moreover, its faces all lie on 
edges of the cube.  The dual relations hold for the string icosahedron in the other model.  I have not seen 
these models elsewhere in the literature or in other exhibits. 
 
Likewise the dodecahedron and icosahedron are polar to one another.   Shown in the exhibit is a 
progression of five models, entitled “Expansion and Contraction in Polarity.”  The sphere of polarity’s 
size is kept constant.  The brass icosahedron becomes progressively smaller, resulting in the polar 
aluminum dodecahedron becoming progressively larger.  In the middle model, the two polyhedra cross at 
the midpoints of their edges.  The ratio, (dodeca diam)/(icosa diam), is multiplied by the golden mean as 
one moves from each model to the next.  In this way, many interesting geometric relations can be seen in 
each of the stages of the progression.  Moreover, it is a challenging but interesting exercise, while viewing 
the models, to imagine a continuous movement from each model to the next one. 
 
So, the cube and octahedron are polar to one another and likewise the dodecahedron and icosahedron.  
What about the tetrahedron?  Should its polar not give a sixth Platonic solid?  No, Euclid was correct; 
there are only five.  The tetrahedron is special; it is polar to itself, as shown here in one model. 
  

Rotation Groups 
 
There is a remarkable theorem, due to Euler, which tells us that any orientation preserving rigid 
movement of a sphere is a rotation about an axis.  It follows that such a symmetry of any finite figure is 
likewise a rotation about an axis, and that all of the rotations of a finite figure form a group.  Some 
figures, such as an n-sided prism, have rotation groups that are reducible; although the prism is three 
dimensional, its rotation group is just a combination of symmetries of one and two-dimensional figures; 
the symmetry is not really three dimensional.  There is a second remarkable theorem, which tells us that 
any irreducible group of rotations of a finite figure has the same rotational symmetries as one of the 
Platonic solids. ([1], [3], [7]) So, there are just three finite irreducible rotation groups: the tetrahedral, 
octahedral, and icosahedral.  The ancient geometers found that Platonic solids express something 
fundamental about the nature of space in that they are the only convex regular solids.  In modern times we 
again see them to be fundamental as representing the only finite rotational three-dimensional symmetry. 
 
There are eight models here, showing all of the axes of rotation for each of the three Platonic solid 
groups.  The number of rotations of each group is tallied, giving 12, 24, and 60, for the tetrahedral, 
octahedral, and icosahedral groups, respectively.  One asks, “Why are they all multiples of 12?”  This will 
be answered in what follows. 
 

The Tetrahedron and Subgroups 
 
The tetrahedron is very special.  It has fewer vertices, fewer edges, and fewer faces than any other 
polyhedron.  Moreover, the regular tetrahedron can be oriented in relation to each of the other Platonic 
solids so that all of its rotations are also rotations of the other Platonic solid.  In other words, the 
tetrahedral group is a subgroup of the octahedral group and also a subgroup of the icosahedral group.   
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Figure 1: Two tetrahedra (one brass, one aluminum) and a cube and octahedron in string. 

Photo: Jason Pogacnik 
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Figure 1 shows that the tetrahedron can be inscribed, vertex on vertex, in a cube, and dually that it can be 
circumscribed, face on face, about an octahedron.  Of the octahedron’s 24 rotations, 12 are also rotations 
of each of the two circumscribing tetrahedra.  The other 12 rotations of the octahedron interchange the 
brass and aluminum tetrahedra.  A model in the exhibit, not pictured in this paper, comprises five 
tetrahedra in brass tubes, suspended from one another by wires that form a circumscribed dodecahedron; 
it also has an aluminum icosahedron suspended inside, showing the intersection of the five tetrahedra.  A 
second model, made by Steve Morse in cardboard, shows the same five tetrahedra; here one can easily 
imagine the circumscribing dodecahedron.  The theorem of Lagrange, that the order of a subgroup divides 
the order of a finite group, is proved by noting that the equal-sized cosets partition the group.  This model 
of five tetrahedra gives an example in which the cosets can be pictured very concretely.  In fact, consider 
one of those tetrahedra, say the red one.  Of the dodecahedron’s 60 rotations, 12 of them are also rotations 
of the red tetrahedron.  Thus, the tetrahedral group is a subgroup of the icosahedral group.  Moreover, of 
those 60, 12 of them (one coset) will move the red tetrahedron to, say the blue tetrahedron, and 12 more 
to each of the other colors.  So, we see very concretely why the order of the icosahedral group is five 
times the order of the tetrahedral group. Moreover, the rotation groups of the five tetrahedra are 
subgroups of the icosahedral group and illustrate well the idea of conjugate subgroups. 
 
Next in the exhibit is a model, showing all five Platonic solids in one figure, with the dodecahedron and 
cube sharing vertices with the tetrahedron, while the octahedron and icosahedron share face planes with 
the tetrahedron.  Take any two Platonic solids and orient them so that four axes of order 3 coincide; this 
can be done, since they both have a tetrahedral group among their rotations.  Then by varying the relative 
sizes of the two solids, one finds many interesting and beautiful geometric relationships, some of which 
are shown in this exhibit. 
 

Nested Sequences  
 
In the series, “Expansion and Contraction in Polarity,” the second model is a dodecahedron suspended 
inside an icosahedron, and the fifth in the series is an icosahedron suspended inside a dodecahedron.  One 
can imagine combining these two to make an infinite sequence of dodecahedrons and icosahedrons, 
alternately suspended inside each other.  Figure 2 below shows a brass dodecahedron on the outside with 
an aluminum icosahedron suspended inside it and finally another small dodecahedron on the very inside.   
 
This model is accompanied in the exhibit (not shown in this paper) by its dual, which has a large and a 
small icosahedron and a dodecahedron in between.    
 
In figure 2, the ratio of the large dodecahedron to the small one is the cube of the golden mean.  There 
must be two other dodecahedra in between the small and large ones, with ratios to the small one of the 
golden mean and the golden mean squared, respectively, creating thereby a geometric progression.  What 
would that look like?  It turns out that if a cube is inscribed in a dodecahedron, edge on face, and another 
dodecahedron is inscribed in the cube, edge on face, then the two dodecahedra have ratio of the golden 
mean.  Figure 3 below shows a sequence of four brass dodecahedra, nested with 3 black string cubes in 
between. 

The Platonic Solids: a Three-Dimensional Textbook

117



 
Figure 2: Two dodecahedra with an icosahedron suspended between.  Photo: Jason Pogacnik 
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Figure 3: A nested sequence of dodecahedra and cubes.  Photo: Jason Pogacnik 

 
The Kepler-Poinsot Polyhedra 

 
If one relaxes the requirement of convexity, then in addition to the five Platonic solids, four more regular 
solids exist, known as the Kepler-Poinsot polyhedra.  These four appear in the exhibit, beautifully 
rendered in wood by Bob Rollings.  They are accompanied by a model which is the dual of the one in 
figure 2 above.  If one looks attentively, one can find within that model every one of the four Kepler-
Poinsot polyhedra.  
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