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Abstract
We review several methods of constructing models of torus knots with non-planar polygonal faces, with the majority
of hexagons and some non-hexagons. These methods were developed by the authors throughout recent years, albeit
mostly in the context of chemical research on carbon nanostructures. The resulting hypothetical molecular structures
are predicted to be chemically stable if care is taken in arranging non-hexagons in the midst of hexagons. Among
them, a general scheme that is applicable to arbitrary torus knots (p, q) with p < q is presented. For the simplest
nontrivial case, a trefoil knot, two additional routes can be drawn. Noteworthily, one of them is inspired by Escher’s
artwork Knots. These models are realized physically with the technique of mathematical beading.

Introduction

Torus knots are ones that lie on the surface of a torus in 3D. They constitute a good part of recreational math-
ematics among other geometric figures such as polyhedra. A torus knot can be uniquely and topologically
defined by two coprime integers (p, q), where p is the number of windings the knot has around the central
axis and q is that of around the center circle of the torus. A more canonical parametrization of a torus knot
can be written as follows,

x = (R+ r cos(qϕ)) cos(pϕ)

y = (R+ r cos(qϕ)) sin(pϕ) (1)

z = r sin(qϕ),

where R > r are the two characteristic radii of the torus in this representation, and ϕ ranges from 0 to 2π.
In this paper we will discuss only the case where p < q, since in our point of view its geometric implication
is simpler than otherwise. The simplest nontrivial torus knot, the trefoil knot, is given by (p, q) = (2, 3).

Our goal is to construct torus knots with polygonal faces (not necessarily planar) and trivalent nodes.
This is motivated by our previous studies on complex graphitic structures and on the beaded representations
of them, in chemical and educational literatures as well as in Bridges. These structures are composed of
trivalent carbon atoms and possess nontrivial geometries and topologies. In this context, one of the building
blocks is carbon nanotubes (CNT), which refer to straight tubules obtained by rolling up a hexagonal honey-
comb. We ask the question of building nanotube structures where the center line of the tube (approximately)
follows Eq.1. We remind the readers of Euler’s formula χ = V − E + F of a general polyhedron, where χ
is the Euler characteristic of the closed surface which the polyhedron corresponds to, and V , E, and F are
the number of vertices, edges, and faces of the polyhedron, respectively. In the context of graphitic carbon
structures, where each node (atom) is connected with three nearest neighbors (trivalent graphs), this can be
translated into the following expression:∑

m>2

(6−m)Nm = 6χ, (2)
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where m runs over positive integers starting from 3 and Nk represents the number of k-member ring. As
an example, for a sphere (χ = 2) covered with graphitic carbon and restricting ourselves to only pentagons
and hexagons, we find N5 = 12 from Eq.2. A specific and perhaps iconic example of this is the C60

buckyball, which has the soccer ball pattern and can be approximated by the truncated icosahedron, one of
the Archimedean solids.

Since for an arbitrary closed loop of tubules one has χ = 0 (eg. a torus), the trivial solution to con-
structing torus knot CNTs would be simply bending the straight tubes according to the model torus knot
space curve. This, however, greatly challenges the sense of art and chemistry of the authors, as we consider
ourselves both chemists and enthusiastic Bridges practitioners. We attempt to find torus knot CNTs that are
not only reasonably stable in a chemical sense but also artistically satisfying. The chemical instability can
be roughly equated to the deviations from the angle and the side length constraints and the planarity of the
constituent polygons. Also, from the authors’ own experience without rigorous scientific verification, the sta-
bility in the molecular world can be somehow translated to that of the corresponding macroscopic model[4].
This refers to the beaded molecules that the authors have been advocating in the past few Bridges[3, 5]. Our
goal is to create such models of torus knots with minimal strain energies which allow their beaded models to
be realized. An example of beaded trefoil, a different version of those shown in Fig.4 will appear in the art
exhibit this year in Seoul.

This paper summarizes numerous ways of achieving this goal throughout the past few years developed
by the authors. We present firstly a general approach to (p, q) torus knot with p < q, which requires prior
knowledge about constructing carbon nanotori and helical tubules. Due to the special properties of the trefoil
knot, demonstrated by our beloved Escher in one of his paintings, there are other ways of approaching trefoil
knot CNTs. We remark that this is a purely theoretical work in the context of chemical research while we
find it rewarding from an artistic point of view.

Figure 1 : A D6h toroidal CNT. Shaded polygons are ones that are not hexagonal. Adopted with
permission from Ref.[1].
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Tori and Helices

Here we will briefly summarize a general approach to constructing carbon nanotori and helically coiled
tubes. Readers who intend to know more are referred to a series of papers on the classification of these
nanostructures[1, 2].

A toroidal CNT can be most simply cast by tiling the surface of a hexagonal prism with a hexagonal hole
in the middle, as shown in Fig.1. The numerous integral parameters denote the graphical distances between
the non-hexagons (shaded). For example, n75 defines the distance between a heptagon and its nearest-
neighboring pentagon, and s denotes that of between nearest heptagons. Rather complicated combination
rules exist among these parameters for one to obtain highly symmetric (Dnh- or Dnd-symmetric, where n is
the rotational symmetry number) toroidal CNTs through this approach[1]. They are, however, not essential
in the present context.

Our next step is to apply the so-called shifting operations to these highly symmetric toroidal CNTs,
as illustrated in Fig.2. It can be understood in the following way. Firstly, the intersections between a torus
and the horizontal plane in which it is residing are two concentric circles, referred to as the outer and the
inner equators. We then cut through the outer equator of the toroidal CNT, shown in the central column of
Fig.2(a), and reconnect the broken bonds to the atoms next to their original neighbors. The corresponding
helical CNT is obtained by a final cut at any meridian and applying periodic boundary conditions. Note that
the same can be applied to the inner equator of the parent toroidal CNT. This is called the horizontal shifting
operation since the direction of our manipulations is always parallel with the torus’s latitudes.

Figure 2 : Creation of helical CNTs from toroidal ones. (a) Above: application of horizontal
shifting. (b) Below: application of vertical shifting.

As opposed to the above mentioned, there is also vertical shifting, as shown in Fig.2(b). We emphasize
that both of these graphical operations are subject to the discrete nature of the molecular structure to whom
they are implemented. For example it is obvious that the twisting angle of the vertically shifted toroidal CNT
in the figure can only take values that are multiples of π/2, since the girth of the parent CNT contains four
carbon atoms. The importance of this observation will become clear as we move on to the construction of
torus knot.
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Torus Knot from Helices

We are now in a position to tackle torus knots, which are far more complicated than a torus or helix. The
central concept utilized here is the analogy between torus knots and polygrams. For a (p, q) torus knot with
p < q, there is a uniquely defined polygram {q/p} (up to an ambiguity of chirality). See Fig.3 for example.
Here a (2, 7) torus knot tube is illustrated in part (a), which is obtained simply by embedding a tube onto the
central knot curve defined in Eq.1. The color convention is chosen such that segments above the plane of
the paper are reddish and those below are bluish. In Fig.3(b) the knot is flattened on to the plane and clearly
shows its correspondence to a {7/2} heptagram. The nodes of the polygram represent the loci where the
torus knot space curve passes through the horizontal plane.

Figure 3 : Illustration of (a) a (2, 7) torus knot tube, and (b) the corresponding {7/2} heptagram.
(c) Replacement of a rotational unit cell of the heptagram with a horizontally shifted helical CNT
which has a complete full turn. (d) The completed (2, 7) torus knot CNT.

Following this observation, one can divide the torus knot into q identical segments according to its
rotational symmetry. As shown in Fig.3(c), each of the segments is composed of a red and a blue section.
This can then be replaced with a slice of helical CNT as discussed in the previous section which has one
complete turn. The full torus knot CNT can then be obtained by applying the rotational symmetry to it, see
Fig.3(d). Note that this usage of symmetry automatically introduces the vertical shifting operation mentioned
earlier. At each of the joints, the adjacent segments are rotated 2pπ/q with respect to each other. After q
turns of rotation, the torus knot structure is completed and one traverses p rounds around the central axis.

The essence of this approach lies upon the fact that a torus knot can be thought of as a helix wrapped
around a scaffold torus and with its two ends reconnected. The minor radius (r in Eq.1) of the torus is equal
to the radius of the helix, while the major radius is given by R = h csc(pπ/q). The rather complicated
geometry of torus knots calls for at least two mutually commensurable mechanisms of bending a tube, and
the aforementioned two shifting operations meet this requirement. In our convention, a rotational unit cell is
a horizontally shifted helical CNT, while the unit cells themselves are vertically shifted with respect to each
others. We also like to emphasize that careful selections of parameters for the parental torus and helix are
needed to construct stable torus knot models of this kind.

Escher’s Trefoil Knot

It appears that more direct ways of implementing a trefoil CNT exist, as suggested by one of the paintings
of Escher’s, Knots, see Fig.4. It can be seen from the lower and the upper left of the painting that a set of
Cartesian coordinate systems can be assigned continuously to all points of a trefoil. This allows a simpler
route to construct a trefoil CNT solely from toroidal CNT, even without the complication of intervening
helical tubes as in the previous section.
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Figure 4 : Left: Escher’s rendering of a trefoil knot. With permission from the M. C. Escher
Company. Right: An enantiomeric pair of beaded molecules of the corresponding trefoil CNT.

step 1 2 3 4 5 6 7 8 9 10 11 12
x +a1 0 0 -a2 0 0 +a3 0 0 -a2 0 0
y 0 +a2 0 0 -a1 0 0 +a2 0 0 -a3 0
z 0 0 +a3 0 0 -a2 0 0 +a1 0 0 -a2

Table 1 : One possible recipe for making a right-angle trefoil, with 2a2 = a1 + a3.

Upon scrutinizing the geometry of Escher’s trefoil, one can find that it is composed of three arcs, each
of which spans an angle of 3π/2. Naively one gets 9π/2 accounting for the three unit cells. This contradicts
with the fact that a trefoil knot circles the central axis twice, which corresponds to an angle of 4π. What
really happens here is that the arc angle projected onto the plane of paper would be 4π/3, whose triple is
4π indeed. Due to the same reason, the relative positions of the three unit cells are made such that the local
x-, y-, and z-axes of one unit cell are exactly the y-, z-, and x-axes of the next unit cell. The other circular
permutation corresponds to the trefoil with the opposite handiness. An example of the such construction
scheme is presented in the right side of the figure: an enantiomeric pair of beaded trefoil knots. A different
version of this pair of the beaded trefoil CNTs will appear in the art exhibit as well.

Another Possibility

There is another closely related approach which makes use of the commensurability between the geometry of
the trefoil and 3D Euclidean space as well. This can best be illustrated by Fig.5(a). Starting from the origin,
one first makes a step of length a1 in the x direction, followed by a step of length a2 in the y direction, then
a3 in the z direction, etc., see Table.1 for the complete recipe. Also, a1 ̸= a2 and a3 = 2a2−a1 are required
to exclude self-intersection. This approach to the construction of the trefoil has been known in recreational
mathematics for a long time, though the authors could not find its original source. We remark that this is an
example of 3D turtle geometry restricted to right-angle turns[6]. And the work presented by Verhoeff et al.
in previous Bridges are also highly related[7], especially the Fig. 8 of [8].

We now need to find a way to assemble CNTs according to this scaffold. This was tackled by the authors
last year at the Bridges[3], with the application of zome geometry. The methodology is applicable here since
all the connected straight segments form right angles with each other. The straight CNTs are joined together
by spherical fullerenes, e.g. C60 buckyballs, with holes that appropriately accommodate the CNTs. See our
previous report for more discussion. One example of the trefoil CNT is shown in Fig.5(b).
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Figure 5 : (a) A lattice stick representation of the trefoil knot constructed according to Table.1
with (a1, a2) = (1, 2). (b) The corresponding trefoil CNT[3].

Conclusion

To conclude, we have reviewed three separate methods to the construction of torus knots with non-planar
polygonal faces. We require the non-regularity of the polygons to be minimal such that the overall structure
is stable in terms of the prediction from theoretical chemical simulations and/or the feasibility to construct
its beaded representation. While the first of these proposed methods was designed for general (p, q) torus
knots with p < q, the other two are restricted to the trefoil knot. Generalizations to include the p > q case,
knots other than torus knots, or general space curves are still open problems.
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