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 Abstract 

 
In this workshop we will start from an ancient Sangaku problem about a large central ball covered by thirty small 
balls. We will illustrate the problem with physical model constructed by mathematical beading. In this workshop, 
participants will learn the basic techniques of mathematical beading and make bead models of C20 and C60, which 
correspond to Goldberg polyhedra with chiral vector (1,0) and (1,1).  

 
In the isolated Edo period (1603-1867) of Japan, new kind of geometric problems quite different from the 
Euclidian geometry become common practices from all walks of life. These problems are gradually 
forgotten in Japan under the influence of Western culture and science. Fortunately, in the late 60s, a high-
school mathematics teacher, Fukagawa Hidetoshi, discovered accidentally this kind of interesting 
traditional Japanese mathematics. Since then, whenever available, he went to different temples and 
shrines and tried to collect and organize these problems. Finally, together with Tony Rothman, a beautiful 
book on Japanese Sangaku problems1 is published in 2008. Most of these Sangaku problems are now 
collected in the website on Japanese traditional mathematics, http://www.wasan.jp/.   
 
In this workshop a famous Sangaku geometric problem as shown in Figure 1 will be presented and 
participants will have a hands-on experience of making a model of this problem with the techniques of 
mathematical beading. This problem  was originally described in the appendix of a book entitled “The 
Handbook of Mathematics (算法助術)”2 published 1841. The original problem was written mostly in 
Kanji, which can be easily understood for people who understand in Chinese. Literally, this problem can 
be translated as: 
 

Thirty small balls surround a central big ball such that every small ball is tangent to four other 
neighboring small balls and the central big ball. If the diameter of small ball is 305 in, what is the 
diameter of the central big ball? 

 
Answer: 682 in.  
 
After giving this answer, there begins a discussion on the method used to reach this conclusion, 

which will be explained later. Finally, a general answer 

€ 

R /r = 5  is given at the end.  
 
The structure of typical Sangaku problems can be separated into three parts. In the first part, the problem 
is stated, and then the specific answer is given in the second part. Finally, the detailed procedure and the 
general solution are outlined. This kind of style of presenting the mathematical problems and their 
solutions is common in many ancient Chinese mathematical works such as “The Nine Chapters on the 
Mathematical Art (九章算數)” published more than two thousand years ago.  
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Figure 1: A large ball covered by 30 small balls described in pages 51-53 of “The Handbook of 
Mathematics”. 
 
The trick for solving this problem is to recognize the centers of small balls are exactly located at thirty 
vertices of an icosidodecahedron (Figure 1), which is one of the thirteen Archimedean solids. An 
icosidodecahedron has 32 faces, 12 regular pentagons and 20 regular triangles, and 30 vertices; each of 
vertices shares an edge with four neighboring vertices. It is easy to see that every vertex on the 
icosidodecahedron is located on two regular decagons with their centers coincide with the center of the 
icosidodecahedron. Thus centers of the blue balls in Figure 2a form a decagon.  This means that the 
centers of ten balls along this decagon lie in the same plane passing through the center of the 
icosidodecahedron as shown in the Figure 2b, which gives the cross section through the centers of these 
ten small balls and the central large ball. 
 

        
Figure 2: Sangaku problem: 30 small balls around a central large ball. 
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Two neighboring small circles (in blue) in these ten circles are tangent to each other and are also to the 
central large circle (in orange). It is straightforward to find the ratio between large and small circles by the 
trigonometry because they satisfy the identity,   

€ 

sin18 = r /(r + R) , where 

€ 

r  and 

€ 

R are radii of small and 
large circles. Therefore, one gets 

€ 

R /r = 5 . However, in the Edo period, mathematicians in Japan 
adopted pure geometric approach without using the trigonometry. Drawing a few auxiliary lines as shown 
in the right figure of Figure 2c, one can identify a few similar triangles. Using these geometric relations, 
two identities 

€ 

2r + a = R + r  and 

€ 

a /2r = 2r /(R + r)  can be written down. Again, these equations can be 
solved to get the ratio 

€ 

R /r = 5 .  
 
In this workshop, we will use the mathematical beading to illustrate this geometric problem from the Edo 
period. Creating three-dimensional objects with beads has been practiced in oriental countries for 
centuries. The technique for making most of 3D object is the figure-eight stitch (Hachi-Ami) or right-
angle weave3,4, which will be employed to make a model consisting of 30 small beads connected by a 
long nylon line in exactly the same way.  
 
To start with this hands-on project, we need to choose 30 beads with same colors. Note that we will think 
the 30-ball structure as a dodecahedron instead of an icosidodecahedron, which will become clear after 
the model is built. Thus, beads will represent the edges of a dodecahedron. Since there are twelve 
pentagons in a dodecahedron and each pentagon consists of five beads, we still need 12x5/2=30 beads, 
where a division of two is because each bead is shared by two pentagons. We will need a length of nylon 
fishing line approximately 80x the length of a single bead. The detailed procedure is given as follows 
(Figure 3a): 
 

1. String 5 beads in the middle of the line.  
2. Take the right line and insert it through the furthest bead in the opposite direction and pull the lines 

tight. This makes a pentagon (1).  
3. Add 4 beads on the left line.  
4. Take the opposite line and insert it through the furthest bead in the opposite direction and pull the 

lines tight. This makes the second pentagon (2). The first two loops look like a figure eight. 
5. In order for the next pentagon to be fused with the existing rings, the line must exit from 

neighboring rings. Therefore, insert the line at the pentagon junction through the closest pentagon 
bead in order to make a ‘V’ shape - this is called fishing and this line is denoted as the fishing line 
(highlighted in grey). Note that you will always add beads to the other line (non- fishing line) in the 
following step - This allows for the symmetric growth of the fullerene according to the spiral code 
and simplifies the beading process. 

6. Add three beads on the non-fishing line. Take the other line and insert it through the furthest bead 
in the opposite direction and pull the lines tight. This makes a pentagon (3). 

7. Go fishing and add three beads on the non-fishing line.  
8. Take the other line and insert it through the furthest bead in the opposite direction and pull the lines 

tight. This makes a pentagon (4).  
9. Repeat steps 7 & 8 to make the fourth pentagon (5). Notice that the fishing and non-fishing lines 

will always alternate and both lines should decrease in length equally.  
10. Go fishing twice and add two beads on the non-fishing line.  
11. Take the other line and insert it through the furthest bead in the opposite direction and pull the 

lines tight and go fishing. This makes a pentagon (6) and completes the first set of pentagons. This 
structure is the hemisphere.  

12. Add 3 beads on the non-fishing line. Take the other line and insert it through the furthest bead in 
the opposite direction and pull the lines tight. This makes a seventh pentagon (7).  

13. Go fishing (through one, two or three beads, as necessary) and complete the remaining six 
pentagons around the original pentagon (7 to 12) to complete the whole structure (Fig.3b).  
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14. Fish one line around the pentagon to a common vertex and tie a knot. Fish the lines again through 
some beads to hide the knot. Use the remaining line to hang your model or cut the lines flush to 
obtain a free model (Fig.3c). 

 

               
 

Figure 3: (a) Detailed procedure for making the bead model for the 30-ball problem; (b) Schlegel 
diagram and the corresponding beading direction (thick orange line) for a dodecahedron; (c) the 
corresponding bead model; (d) the structure of dodecahedrane (C20H20). 
 
It is interesting to note that we can interpret bead models constructed with figure-eight stitch as physical 
models of fullerenes as long as beads represent chemical bonds instead of atoms. Therefore the bead 
model that consists of thirty small beads we just made is in fact corresponding to the physical model of a 

a 
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C20 arranged as a dodecahedron. If we add additional twenty hydrogen atoms, we then get the famous 
dodecahrane molecule (Figure 3d). More generally, the same beading technique can also be employed to 
make more complicated fullerenes and graphitic structures such as C60, C70, carbon nanotori, carbon 
nanohelices, Sierpinski fullerenes, carbon Schwarzites, high-genus fullerenes, and almost any kind of 
trivalent carbon structures as have been shown in our publications in previous Bridges meetings4-8.  
 
Here we only give a brief description of using spiral codes and Schlegel diagrams to create bead models 
of C60, C70 and C80 for the participants of this workshop. First, we show the procedure to make C60 (Figure 
4a). If we ignore the tiny difference in bond lengths of single and double bonds, the structure of a 
buckyball molecule is actually the truncated icosahedron (Figure 4b), which is again one of the thirteen 
Archimedean solids. To make a bead model of C60, it is easier to use its Schlegel diagram (Figure 4c), 
which gives the complete beading information. Starting from the central pentagon and then following the 
spiral direction specified in Figure 4c, we make a pentagon first, followed by five hexagons, and then a 
pentagon, a hexagon, etc. The resulting bead model is shown in Figure 4d. This sequence of pentagons 
and hexagons along this spiral direction can be written down explicitly as [5 66666 5656565656 
6565656565 66666 5]. One can also view a C60 molecule as a sphere consisting of six layers of polygonal 
strips. For the south hemisphere, we first bead a pentagon for the South Pole, five hexagons for the next 
layer, and then 10 polygons consisting of 5 pentagons and 5 hexagons. For the remaining part, we reverse 
the beading sequence to get the north hemisphere. 

      
Figure 4: Geometry, Schlegel diagram, and bead model of C60. 

 
There is even a simpler trick to make the bead model of a C60 molecule, if we use beads of two different 
colors to represent single and double bonds respectively. This is because there are 32 polygons consisting 
of 12 pentagons and 20 hexagons in a C60. Every pentagon is separated from neighboring pentagons by 
exactly one edge (Figure 4b). In the language of chemists, every pentagon consists of five single bonds, 
and every hexagon consists of three single and three double bonds alternatively. Therefore, we should use 
a single color for pentagons and two different colors alternatively for hexagons. Following this rule, we 
can use these colors as a mnemonic for deciding whether one needs to make a pentagon or hexagon in the 
next step. Another important structural feature of a C60 is that every pentagon is surrounded by five 
hexagons and every hexagon is surrounded by three pentagons and three hexagons, alternatively. If we 
start from a pentagon with single color and follow spiral direction carefully, eventually, one should get a 
bead model of C60 correctly without using any other information. 
 
But to make other more complicated cage-like fullerenes, spiral codes that describe the positions of 
twelve pentagons along the spiral direction are very useful if they exist. For instance, the spiral code of 
C60 is [1 7 9 11 13 15 18 20 22 24 26 32]. The shape of resulting beaded structure is always similar to the 
shape of the corresponding microscopic fullerene. It is quite amazing that one can create the faithful 
structure for an arbitrary fullerene with beads so easily. A simple explanation is that hard sphere repulsion 
among beads effectively mimics the valence-shell electron-pair repulsion of trivalent carbon atoms in 
fullerene molecules.8 A list of fullerenes up to 100 carbon atoms is given in the appendix of the book "An 
Atlas of Fullerenes" by P. W. Fowler and D. E. Manolopoulos.9 So one can create a bead model of any 
fullerene easily by following its spiral code. The spiral codes of C70 and seven isomers of C80 are given as 

a b c d 
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follows: C70:1 [1 7 9 11 13 15 27 29 31 33 35 37]; C80:1 [1 7 9 11 13 15 28 30 32 34 36 42]; C80:2 [1 7 9 
11 13 18 25 30 32 34 36 42]; C80:3 [1 7 9 11 14 22 27 30 34 36 38 40]; C80:4 [1 7 9 11 14 23 28 30 33 35 
37 39]; C80:5 [1 7 9 12 14 20 26 28 32 34 39 42]; C80:6 [1 7 10 12 14 19 26 28 32 34 39 42]; C80:7 [1 8 10 
12 14 16 28 30 32 34 36 42]. 
 
In addition to their spiral codes, we give the Schlegel diagrams and possible beading directions for C70 
and C80:7 in Figures 5a and 5b. 
 

 
Figure 5: Schlegel diagram of C70 and C80:7. 
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