On Colouring Sequences of Digital Roots

Gabriele Gelatti Italy gabrigelatti@gmail.com www.gabrigelatti.it

Abstract

In this paper we introduce a logic of transforming integers from 1 to 9 into colours, and present a visual method of seeing the periods of digital roots in Fibonacci-like sequences.

Transforming Numbers into Colours

The *RYB* (*Red-Yellow-Blue*) colours model [1] is formed by a triad of primary colours (yellow, red, blue), and a triad of secondary colours (orange, green, purple) deriving from the mix of primary colours. We apply it to describe some properties of positive integers from 1 to 9. The logical model is completed with the addition of a third triad of achromatic colours (black, white and grey). We match colours to numbers as: 1 = yellow; 2 = orange; 3 = white; 4 = red; 5 = green; 6 = black; 7 = blue; 8 = purple; 9 = grey.

Figure 1: Numbers and colours.

Digital Root

We use the operation of *digital root* [2] to reduce any positive integer bigger than 9 to a one cypher number. For example: 123 = 1 + 2 + 3 = 6. This can also be done by dividing any positive integer by 9 and considering its remainder (e.g.: 123 / 9 = 13,666...). Multiples of 9 leave no remainder. All positive integers receive a given colour according to the above *chromatic* rules. Assigning colours to *digital roots* is equivalent to assigning colours to the values *modulo* 9 [3], considering *grey* = 0, as $9 \equiv 0 \pmod{9}$.

Complementarity and Sequences of Integers

The above Figure 1 shows the triads of colours $(1, 4, 7 = primary \text{ colours}; 2, 5, 8 = secondary \text{ colours}; 3, 6, 9 = achromatic colours})$ combined in couples of symmetric *complementary* colours, except number 9.

The mix of each *complementary* couple, according to the *RYB colours model*, produces the neutral colour *grey*; in the same way the addition of the couples of numbers 1+8, 2+7, 3+6, 4+5 makes always 9.

The logical rules of *RYB colours model* and the *digital root* operation are here combined to create a "chromatic arithmetic". The pattern in the Figure 2 displays the symmetries of colours *complementarity* in the *digital root* reduction of the *multiplication table*.

Chromatic Analysis of Fibonacci-like Sequences

The rules of "chromatic arithmetic" applied to Fibonacci [4] and Lucas [5] sequences display: Fibonacci = ... 2, 3, 5, 8... (*secondary* colours + 3); Lucas = ... 1, 3, 4, 7... (*primary* colours + 3). We align the *digital roots* of Fibonacci and Lucas sequences on the common term "3": 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9, 1, 1...; 2, 1, 3, 4, 7, 2, 9, 2, 2, 4, 6, 1, 7, 8, 6, 5, 2, 7, 9, 7, 7, 5, 3, 8, 2.... The sum in column of the terms of the two sequences creates a third sequence of *digital roots*:

3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3, 3, 6, 9, 6, 6, 3, 9, 3... entirely made of *achromatic* colours. The three sequences could also be simplified as "adding 3 to numbers 1, 2 and 3".

1	2	3	4	5	6	7	8	9
2	4	6	8	1	3	5	7	9
3	6	9	3	6	9	3	6	9
4	8	3	7	2	6	1	5	9
5	1	6	2	7	3	8	4	9
6	3	9	6	3	9	6	3	9
7	5	3	1	8	6	4	2	9
8	7	6	5	4	3	2	1	9
9	9	9	9	9	9	9	9	9

Figure 2: *Chromatic multiplication table.*

Figure 3: Tables of Fibonacci-
like sequences, starting by adding
3 to numbers from 1 to 9.Figure 4: Tables of Fibonacci-
like sequences, starting by adding
9 to numbers from 1 to 9.

We then start any sequence by adding 3 to all numbers from 1 to 9 (Figure 3): a new *chromatic* sequence appears only in column 7 and 8. Three *chromatic* columns repeat twice (1 and 5, 2 and 4, 7 and 8 are equivalent). They are made of all colours and have a *Pisano period* [6] of 24, divided into two *complementary* periods of 12. The *achromatic* column repeats with a *Pisano period* of 8, divided into two *complementary* periods of 4. For the given equivalence of *digital roots* with *modulo 9*, only by adding 9 (Figure 4) to all numbers from 1 to 9, we produce a new column made of grey and *Pisano period* of 1.

From these observations we can derive a *theorem* of "chromatic arithmetic".

Theorem. All the possible Fibonacci-like sequences of *digital roots* are described by only five sequences of colours: three are made of all colours, one of *achromatic* colours and one of only *grey*.

Proof of theorem. The patterns of the *chromatic tables* of Figures 3 and 4, along with general rules of *recursive addition, digital root* reduction, and *modulo 9* arithmetic, provide a visual mathematical proof.

References

- [1] Goethe, Zur Farbenlehre. Cotta, 1810; also Itten, Kunst der Farbe, Verlag, 1961.
- [2] http://mathworld.wolfram.com/DigitalRoot.htmla, (as of Feb. 2, 2014).
- [3] http://en.wikipedia.org/wiki/Modular_arithmetic, (as of Apr. 13, 2014).
- [4] Fibonacci, Liber Abaci, Springer, 2003.
- [5] http://oeis.org/A000032, (as of Feb. 2, 2014).
- [6] http://en.wikipedia.org/wiki/Pisano_period, (as of Apr. 13, 2014).