
From Path-Segment Tiles to Loops and Labyrinths

Robert Bosch, Sarah Fries, Mäneka Puligandla, and Karen Ressler
Dept. of Mathematics, Oberlin College, Oberlin, OH 44074

(bobb@cs.oberlin.edu)

Abstract
We explain how to use integer programs to assemble a collection of path-segment tiles—squares decorated with path
segments—on a grid so that the path segments join together toform a single closed loop or a single open path through
the centers of the squares of the grid. We describe how to optimize (maximize or minimize) the number of bends
(90-degree turns) in the loop or path. We show how to force loops to be symmetric and to encourage paths to be
as close to symmetric as possible. We conclude by displayinglaser-cut and 3D-printed artwork designed with our
integer programs.

1 Introduction

Integer programs are mathematical optimization problems in which the objective is to optimize (in some
cases, to maximize, and in others, to minimize) a linear function of integer-valued variables subject to one or
more linear constraints (equations or inequalities) on those variables [10]. Since the 1960s, integer programs
have been applied with great frequency and success to problems in the areas of logistics, manufacturing,
and scheduling, and in these applications, the objective isusually to maximize profit or minimize cost [7].
For the last 12 years, Bosch and colleagues have conducted investigations into how integer programs can be
employed in the construction of visual artwork [1-6,9]. In the present article, we continue these explorations.

We focus on using integer programs to assemble a collection of path-segment tiles(displayed in Figure 1)
on a square grid so that the tiles’ path-segment decorations(drawn in black) join together to form a closed
loop (a Hamiltonian cycle) or a labyrinth (a Hamiltonian path) through the centers of the squares of the
grid. We strive to produce aesthetically pleasing loops andlabyrinths. To this end, we employ methods for
optimizing (maximizing or minimizing) the number of bends (90-degree turns) in the loop or labyrinth, for
forcing loops to be symmetric, and for encouraging labyrinths to be as close to symmetric as possible.

7 8 9 10

5 6

1 2 3 4

Figure 1: Path-segment tiles.

Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture

119

2 Designing Loops with Path-Segment Tiles

In this section, we describe how to use integer programs to arrange copies of the path-segment tiles into a
loop (a Hamiltonian cycle) on anm× n board (grid of squares). We require that a tile be placed in each
square of the board, and we strive to maximize (or minimize) the number of bends (90-degree turns).

2.1 Variables

We setxt,i, j equal to 1 if we place a copy of tilet in square(i, j), the row-i, column-j square of ourm× n
board, and we setxt,i, j equal to 0 if we don’t do this. Note that there are 6mn variables. (For loops, we can
restrict ourselves to tiles 1 through 6, so 1≤ t ≤ 6, 1≤ i ≤ m, 1≤ j ≤ n.)

2.2 The Core Constraints

To force ourselves to place precisely one tile in square(i, j) of our board, we impose the constraint

6

∑
t=1

xt,i, j = 1. (1)

We needmn such constraints—one for each square.
To force ourselves to place “compatible” tiles in square(i, j) and its right hand neighbor(i, j+1), we

impose the constraints
x1,i, j + x3,i, j + x5,i, j = x2,i, j+1 + x4,i, j+1 + x5,i, j+1 (2)

and
x2,i, j + x4,i, j + x6,i, j = x1,i, j+1 + x3,i, j+1 + x6,i, j+1. (3)

Constraint (2) states that the number of tiles placed in square(i, j) that have the path segment exiting the right
side of square(i, j) must be equal the number of tiles placed in square(i, j+1) that have the path segment
exiting the left side of square(i, j+1). Constraint (3) states that the number of tiles placed in square(i, j) that
havenopath segment exiting the right side of square(i, j) must be equal the number of tiles placed in square
(i, j+1) that haveno path segment exiting the left side of square(i, j+1). We needm(n−1) constraints of
each type—one for each square that has a right hand neighbor.

To force ourselves to place compatible tiles in(i, j) and its lower neighbor(i+1, j), we impose the
constraints

x1,i, j + x2,i, j + x6,i, j = x3,i+1, j + x4,i+1, j + x6,i+1, j (4)

and
x3,i, j + x4,i, j + x5,i, j = x1,i, j+1 + x2,i, j+1 + x5,i, j+1. (5)

We need(m−1)n constraints of each type—one for each square that has a lowerneighbor.
To keep the path from leaving the board, we simply set certainvariables equal to 0 and then remove them

from the model. By settingx3,1, j = x4,1, j = x6,1, j = 0 andx1,m, j = x2,m, j = x6,m, j = 0 for each 1≤ j ≤ n, we
prevent the path from crossing either the top edge or the bottom edge of the board. By settingx2,i,1 = x4,i,1 =
x5,i,1 = 0 andx1,i,n = x3,i,n = x5,i,n = 0 for each 1≤ i ≤ m, we prevent the path from crossing either the left
edge or the right edge of the board.

2.3 Objective Function

If we want to find a loop that has as many (or as few) bends as possible, we maximize (or minimize)

4

∑
t=1

m

∑
i=1

n

∑
j=1

xt,i, j. (6)

Bosch et al.

120

2.4 Sub-loop Elimination Constraints

If we maximize (6) subject to the core constraints, we will end up with a solution similar to the one displayed
in Figure 2.

Figure 2: 30 sub-loops on a 10×12 board.

This solution satisfies all of the core constraints, but it itis composed of sub-loops. To eliminate sub-
loops, we adapt Dantzig, Fulkerson, and Johnson’s approachto solving instances of the Traveling Salesman
Problem (TSP) [8]. In the TSP, when we encounter subtours, weadd linear inequalities to the model to
eliminate them. Here, to eliminate the top left sub-loop, weadd the linear inequality

x1,1,1 + x2,1,2 + x3,2,1 + x4,2,2 ≤ 2 (7)

to our model. This constraint states that we may use no more than two of the four tile placements that make
up the top left sub-loop. Note that if we were to use three of the four tile placements, the compatibility
constraints (constraints (2) through (5)) would force us touse all four of them.

To eliminate other sub-loops, we include constraints similar to constraint (7). As in the case of the TSP,
we add our sub-loop elimination constraints as they are needed.

2.5 Symmetry Constraints

If we want our loop to be symmetric, we can include constraints that force in the desired symmetry. For
example, if we want our 10×12 loop to have 180-degree rotational symmetry, we can include

x1,i, j = x4,11−i,13− j, x2,i, j = x3,11−i,13− j, x3,i, j = x2,11−i,13− j,

x4,i, j = x1,11−i,13− j, x5,i, j = x5,11−i,13− j, x6,i, j = x6,11−i,13− j

for all 1≤ i ≤ 5 and all 1≤ j ≤ 12.

2.6 A Gallery of Loops

To date, we have used our integer programming model to createthousands of loop designs. Figure 3 displays
three designs that have 180-degree rotational symmetry. Loop 3a has 108 bends, the greatest number possible
for a 10×12 loop with 180-degree rotational symmetry. There are seven other 10×12 loops that have 108
bends and 180-degree rotational symmetry. Once we have an optimal solution, we can find additional optimal
solutions (and eventually suboptimal solutions) by including sub-loop elimination constraints to eliminate
the solutions we have already found.

Loop 3c has only 20 bends, the least number possible for a 10× 12 loop with 180-degree rotational
symmetry. There are nine other 10×12 loops with 180-degree rotational symmetry that have only20 bends.

From Path-Segment Tiles to Loops and Labyrinths

121

Loop 3b has 68 bends. To produce this design, we employed special constraints to force in the interior
staircase structure.

a b c

Figure 3: Three 10×12 loops that have 180-degree rotational symmetry.

Figure 4 displays six designs that have horizontal mirror symmetry, vertical mirror symmetry, and 180-
degree rotational symmetry. By repeatedly adding sub-loopelimination constraints to eliminate all previ-
ously obtained solutions, we discovered that there are 2179such loops. Loop 4a is one of 24 loops that have
100 bends, the greatest number possible for a 10×12 loop with these symmetries. Loop 4f is one of eight
loops that have only 36 bends, the least number possible for a10×12 loop with these symmetries. Loops
4b, 4c, 4d, and 4e have 84, 76, 60, and 52 bends, respectively. They are some of our favorite designs.

a b c

d e f

Figure 4: Six 10×12 loops that have horizontal mirror symmetry, vertical mirror symmetry, and 180-degree
rotational symmetry.

Bosch et al.

122

2.7 Loops in Physical Form

To get some sense of what it would be like to travel through these loops, Robert Bosch made laser-cut
versions out of hardboard and MDF. The laser-cut loops can beplaced atop a BRIO Labyrinth game, as
shown in the left half of Figure 5. The player can then turn thegame’s knobs to tilt the board and maneuver
a steel ball through the loop.

Figure 5: A laser-cut version of Loop 4e (left) and a loop made out of 3D-printed tiles (right).

To be able to constructall loops (and labyrinths) that can be constructed from path-segment tiles, Robert
and Derek Bosch designed a set of 3D-printed tiles shown in right half of Figure 5. On one side of each tile,
there is a path segment (not drawn in black, but inset into thetile) that has a 90-degree bend. On the opposite
side, there is a path segment (again, inset into the tile) that goes straight across.

3 Designing Labyrinths with Path-Segment Tiles

In this section, we provide a sketch of how to modify the integer program described in the previous section
so that it can be used to arrange copies of the path-segment tiles into a labyrinth (a Hamiltonian path) that
starts on a specified square on the edge of the board and ends ona specified square in the interior.

a b c

Figure 6: Three 12×12 labyrinths.

From Path-Segment Tiles to Loops and Labyrinths

123

For the three 12×12 labyrinth designs displayed in Figure 6, square(12,6) is the start square and square
(7,6) is the end square. If we want the path to leave the start squareand enter the end square through these
squares’ upper neighbors, we setx7,12,6 = x7,7,6 = 1 andxt,i, j = 0 for all 8≤ t ≤ 10. Other than making some
small modifications to the instances of constraints (2) through (5) that involve squares(12,6) and(7,6), we
are able to leave the core constraints alone. As in the loop case, we add sub-loop elimination constraints as
needed.

a b c

a b c

a b c

Figure 7: Three 12×12 labyrinths with (top) all instances of horizontal mirrorsymmetry shaded and marked
with white dots, (middle) all instances of vertical mirror symmetry shaded and marked with white dots, and
(bottom) all instances of 90-degree rotational symmetry shaded and marked with black dots.

As it is impossible for a labyrinth with our chosen start and end squares to be perfectly symmetric, we do
not include symmetry constraints. Instead of maximizing orminimizing the number of tiles with 90-degree
bends, we make it our goal to design labyrinths that will be asclose as possible to being symmetric.

Bosch et al.

124

To measure closeness to horizontal mirror symmetry, we introduce a binary variableht,i, j for each tilet
with 1 ≤ t ≤ 6 and each square(i, j) with 1 ≤ i ≤ m/2 and 1≤ j ≤ n (each square in the top half of the
board). For each path-segment tilet, we letH(t) denote the image of tilet in a horizontal mirror. Note that
H(1) = 3, H(2) = 4, H(3) = 1, H(4) = 2, H(5) = 5, andH(6) = 6. We then constrain the variableht,i, j as
follows:

xt,i, j + xH(t),m+1−i, j ≤ 1+ ht,i, j, (8)

ht,i, j ≤ xt,i, j, (9)

ht,i, j ≤ xH(t),m+1−i, j. (10)

Inequality (8) forcesht,i, j to equal 1 when bothxt,i, j andxH(t),m+1−i, j equal 1. Inequalities (9) and (10) force
xt,i, j andxH(t),m+1−i, j to equal 1 whenht,i, j equals 1. In other words, inequalities (8), (9), and (10) state that
the variableht,i, j equals 1 if and only if tilet and its imageH(t) are involved in aninstance of horizontal
mirror symmetrythat takes place in squares(i, j) and(m+1−i, j). In the top row of Figure 7, the squares that
have been shaded and marked with white dots are precisely those squares that house instances of horizontal
mirror symmetry. Labyrinthb has 128 such instances, while Labyrinthc has 120 instances, and Labyrintha
has only 74 instances.

To count instances of vertical mirror symmetry, we introduce a binary variablevt,i, j for each tilet with
1≤ t ≤ 6 and each square(i, j) with 1≤ i ≤ m and 1≤ j ≤ n/2 (each square in the left half of th board). For
eacht, we letV (t) denote the image of tilet in a vertical mirror. Note thatV (1) = 2, V (2) = 1, V (3) = 4,
V (4) = 3, V (5) = 5, andV (6). We then constrain the variablevt,i, j with inequalities similar to (8), (9), and
(10). The middle row of Figure 7 shows the locations of instances of vertical mirror symmetry. Labyrinthsb
andc are the best in terms of vertical mirror symmetry, with 128 instances, while Labyrintha is far behind
with only 76 instances.

To count instances of 90-degree rotational symmetry, we introduce a binary variablert,i, j for each tilet
with 1≤ t ≤ 6 and each square(i, j) with 1≤ i ≤ n/2 and 1≤ j ≤ n/2 (each square in the top left quadrant
of the board). Here we are assuming thatm = n. For eacht, we letR(t) denote the tile produced when tilet
is rotated 90 degrees clockwise about its center. Note thatR(1) = 2, R(2) = 4, R(3) = 1, R(4) = 3, R(5) = 6,
andR(6) = 5. We then constrain the variablert,i, j as follows:

xt,i, j + xR(t), j,n+1−i + xR(R(t)),n+1−i,n+1− j + xR(R(R(t))),n+1− j,i ≤ 3+ rt,i, j,

rt,i, j ≤ xt,i, j,

rt,i, j ≤ xR(t), j,n+1−i,

rt,i, j ≤ xR(R(t)),n+1−i,n+1− j,

rt,i, j ≤ xR(R(R(t))),n+1− j,i.

These inequalities state that the variablert,i, j equals 1 if and only if tilet and its rotationsR(t), R(R(t)), and
R(R(R(t))) are involved in an instance of 90-degree rotational symmetry that takes place in squares(i, j),
(j,n+1−i), (n+1−i,n+1− j), and(n+1− j, i) (square(i, j) and the three squares it rotates into). The bottom
row of Figure 7 shows the instances of 90-degree rotational symmetry. Here, Labyrintha is the best, with
116 instances. Labyrinthc has 92 instances, and Labyrinthb has only 20 instances.

We produced Labyrintha by maximizing the sum of thert,i, j variables. By repeatedly adding sub-loop
elimination constraints to eliminate all previously obtained solutions, we discovered that Labyrintha is one
of 112 12× 12 labyrinths that have 116 instances of 90-degree rotational symmetry, the highest number
possible.

To produce Labyrinthb, we maximized the sum ofht,i, j variablesandthevt,i, j variables. Labyrinthb is
one of more than four hundred 12×12 labyrinths than have a total horizontal/vertical (h/v) score of 256, the
highest number possible. We did not find all such labyrinths.We suspect that the number is very large.

From Path-Segment Tiles to Loops and Labyrinths

125

To produce Labyrinthc, we maximized the sum of theht,i, j variables, thevt,i, j variables, and thert,i, j

variables. Labyrinthc has a total horizontal/vertical/rotational (h/v/r) score of 340, the highest number
possible. Only one other 12× 12 labyrinth has a totalh/v/r score of 340, and like Labyrintha it closely
resembles a classical Chartres-like labyrinth. Labyrinthb has a totalh/v/r score of 276, and labyrintha has
a totalh/v/r score of 266.

4 Conclusion

We have shown that integer programs can be used to arrange a supply of path-segment tiles into loops
(Hamiltonian cycles) and labyrinths (Hamiltonian paths).When designing loops with our model, the user
can include constraints that force in desired symmetries and can use the objective function to find the loops
that have the most bends (or the least bends). When designinglabyrinths, the user cannot force in symmetries,
but can strive for closeness to symmetry via an objective function that counts instances of symmetries.

In other words, we have shown that integer programs can be used for searching through the set of all
loops and labyrinths. We can reduce the size of the sets by including constraints that eliminate unwanted
elements (non-symmetric loops, for example). And through our choice of an objective function, we can focus
our search in a desired direction (for example, towards the “bendy” portion of the set of loops or towards the
“almost rotationally symmetric” portion of the set of labyrinths).

We have not shown, nor have we attempted to show, that integerprograms are the best tool (ora best
tool) for this task.

5 Acknowledgments

We thank the anonymous reviewers for their constructive feedback.

References

[1] R.A. Bosch, “Constructing domino portraits,” inTribute to a Mathemagician,ed. B. Cipra et al.,
A.K. Peters, 2004, 251-256.

[2] R. Bosch. Opt art.Math Horizons, February 2006, 6-9.
[3] R. Bosch. Edge-constrained tile mosaics. InBridges Donostia: mathematical connections in art, music,

and science, pages 351-360, 2007.
[4] R. Bosch. Connecting the dots: the ins and outs of TSP Art.In Bridges Leeuwarden: mathematical

connections in art, music, and science, pages 235-242, 2008.
[5] R. Bosch. Simple-closed-curve sculptures of knots and links. Journal of Mathematics and the Arts.

4(2):57-71, 2010.
[6] R. Bosch and A. Pike. Map-colored mosaics. InBridges Banff: mathematical connections in art,

music, and science, pages 139-146, 2009.
[7] D.-S. Chen, R.G. Batson, and Y. Dang.Applied Integer Programming: Modeling and Solution, Wiley,

2010.
[8] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman problem.Op-

erations Research, 2:393-410, 1954.
[9] C.S. Kaplan and R. Bosch. Operations research in the visual arts. InWiley Encyclopedia of Operations

Research and Management Science, Wiley, 2010.
[10] L. Wolsey,Integer Programming, Wiley-Interscience, 1998.

Bosch et al.

126

