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Abstract 
 

When Froebel, the inventor of the Kindergarten [1] designed the “Gifts” and “Occupations” given to the children, 
he deliberately selected materials that provided a haptic dimension to their explorations. This physicality in the 
interaction with the gifts can create a significant potential learning focus making full use of concepts of spatial 
reasoning (front-back, over-under, etc.). For adults playing with the materials for the first time, and incorporating a 
reflective component in their doing and their thinking, the Gifts can provide a novel perspective on other, deeper 
mathematical concepts. The following paper and its accompanying workshop present some activities possible with 
Gift # 14, which involves the Occupation of paper weaving, and explore ideas in modular arithmetic, combinatorial 
geometry, ethnomathematics and more. 
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Introduction: Froebel’s Gifts 
 
In the early tradition of the Kindergarten Movement [1-4], children were given a succession of “Gifts” 
over time that were designed to develop their visual and spatial senses. Number 14 of these Gifts is 
variously identified as paper weaving [1, p. 78-83], paper interlacing (NEA, 1877, as cited in [4], p. 74) or 
mat weaving [3, throughout]. In essence, the Gift consists of a set of slit papers and strips of paper that 
can be woven through them. Figure 1 shows an example of work made using the gift. 
 

 
Figure 1: Example of use of Froebel’s Gift # 14 from one of the author’s childhood 
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Though the meaning and experience of “Kindergarten” has changed since, some of these materials 

are still available to children and others interested in crafts, predominantly in German-speaking countries. 
Figure 2 shows a contemporary sample of the slit paper. 

 
Figure 2: Currently available version of Froebel’s Gift # 14 

 
The highly structured ways in which the materials of Gift #14 are meant to be used makes them a 

rich medium for some mathematical explorations related to weaving, including number work, geometry, 
and tessellations. In this paper and the connected workshop, readers and participants will have a chance to 
explore some of these mathematical ideas and their manifestation in concrete form.  

 
 

Some Definitions 
 
Mat Weaving: In the introduction, we explained that the materials constituting Gift #14 are known under 
various names. This stems from the fact that they were not originally designed in the English-speaking 
context, and the various terms result from to divergent translations. A search through relevant literature 
can dispel the confusion. The use of paper strips and slit paper is called mat weaving in [3]. In addition, 
“mat weaving” is also the expression used to describe the manufacture of mats using bamboo strips [5-8]. 
Finally, works of ethnomathematics (for example, [9]), refer to “plaited mats”.  

Emery [10] discusses the terminology used in the textile art world. In discussing weaving patterns, 
she asserts that:  

“The elements of either or both [warp and weft1] can be paired, tripled, or used in 
larger groups–regularly or irregularly disposed. If identical [multiple-element] units are 
used in warp and weft the plain weave2 structure is often called ‘basket’ or ‘matt3’ 
weave.” 

This description gives a clue as to what might make a weave “mat” or “matt”: the essential aspect is 
the flatness of the “unit” that is woven. Consequently, for this paper, mat weaving shall refer to: weaving 
using a primary unit (which will be called a strand) that is essentially flat (with a cross section that is at 
least 2:1 in proportion), and whereby the properties of dimension, colour and texture of the resulting 
surface are therefore primarily determined by the properties of dimension, colour and texture of the 

                                                 
1 These terms refer to the two main directions of the woven fiber. 
2 Defined later in this paper. 
3 Note that the description in [10] uses a different spelling that suggests the doubling of yarn, through a kind of 
visual onomatopoeia. In this paper, we will use ‘mat’ to show that the unit is single but wider than it is thick. 
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wider faces of the units. Figure 3 shows two examples of mat weaving: plain weave, which can be 
thought of as over-under-over4, and twill. 
 

                         
Figure 3: Examples of patterns created from mat weaving: plain weave (left) and 2/2 twill 

 
When weaving with the contemporary Froebel’s Gift materials, two mats with slits in perpendicular 
directions can be interwoven to create a single design of the same size. If two different-coloured pages are 
used, the design will be further emphasised. In essence, then, the colour can make explicit the direction of 
the visible element. Figure 4 shows the result of such a colouring for the case of the patterns of Figure 3.  
 

                         
Figure 4: Tessellations for the patterns of Figure 3, coloured according to strand direction 

 
Dichromic Tessellations: The result of colouring woven patterns according to the direction of the strands 
connects to research regarding the colouring of tessellations in general and the colour-preserving and 
colour-inverting symmetries of the resulting patterns. There have been several approaches and syntheses 
of findings [14-17]. In particular, [16, p. 64] discuss the idea of a “dichromatic” pattern as one whereby a 
rigid motion or symmetry transformation maps all the white (of one colour) regions onto black (of the 
other colour) regions, and vice versa. In the literature of art, this type of pattern is often said to 
incorporate a “counterchange”. Figure 5 shows two examples, the standard chessboard pattern (which 
corresponds to the plain weave pattern above) and a pattern inspired from a Chinese lattice design found 
in [18, p. 235]: “Balanced Recurving Waves”5. 
  The two examples shown in Figure 5 can be used to illustrate an additional property that the authors 
of [14-17] do not specify. In both cases, and if we consider that the Chinese lattice pattern is made of 3 
different types of tiles, the colouring of the tiles is sufficient to specify their size and shape, without 
recourse to outlines, because each tile only shares edges with tiles of the ‘other’ colour. In contrast, the 
colouring of the twill weave in Figure 3 does not have this property, even though it is a dichromatic 
pattern according to the cited work, unless one considers infinitely long tiles. For the present paper, we 
define as dichromic those tessellations that have the additional property whereby it is not necessary to 
include outlines to define the individual, finite tiles. 

                                                 
4 This kind of pattern is generally assumed for Celtic interlace patterns in that it is not even discussed, but applied en 
bloc [11-13]. It is also the most stable. 
5 The mathematics behind whether a tiling can be coloured in this way is connected to graph theory and is 
exemplified in a problem posed in [19, p. 10] 
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 Figure 5: Examples of dichromic tessellation:  
 chessboard tessellation (left) and “Balanced Recurving Waves” 
 
Mono-polyomino tessellation: By definition and barring an unusual use of the slit paper, patterns created 
are based on the square grid and its various colourings with a maximum of two colours. In the case of the 
Chinese lattice pattern, the design contains three different tiles, each of which occurs in both colours: a 
1×1 square, a 2×1 rectangle, and a 3-square L-shaped tile. These and other shapes defined as “shapes 
made by connecting certain numbers of equal-sized squares, each joined together with at least one other 
square along an edge” are collectively known as polyominos [20, p. 3]. Their names can be further 
specified according to the number of squares that are connected. For example, the Chinese lattice design 
of Figure 5 is made of 36 monominos, 48 dominos and 36 trominos. In addition, according to [14, p. 20], 
a tessellation is monohedral if “every tile in the tiling is congruent (directly or reflectively)”. Together, 
these two definitions serve to specify that a mono-polyomino tessellation is a tessellation whereby the 
tiles are all congruent and, in addition, are polyominos. To illustrate: in Figure 4, the chessboard is a 
dichromic mono(hedral)-monomino tessellation and the Chinese lattice design is a dichromic (non-
monohedral) polyomino tessellation.  

Table 1 shows a few examples of polyominos and their monohedral tessellations. Note that all the 
illustrated dichromatic tessellations are dichromic according to the above definition with the exception of 
the twill pattern.  
 

Designation Basic tile Example of tessellation Dichromatic tessellation 

Monomino 
(plain weave)  

Domino  

Domino 
(twill)  
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Tromino 

 

Hexomino 

 

Table 1: Examples of polyominos and their tessellations 
 
Sona: Independent of the constraints of Froebel’s Gift materials, the execution of a dichromic mono-
polyomino design can be enhanced further by planning it in such a way that a single strand is used 
continuously throughout the entire design, alternately running in each direction, and re-entering at the 
edges. The technique required to achieve this is similar to that used in some of the documentation about 
mat weaving cited at the beginning of the article. In several cases, the weave lies diagonally to the mat’s 
edges and the bamboo strips are folded at an angle so that they re-enter the mat in the other direction of 
weave, at 45° to the edge. Figure 6 shows a diagram of the re-entry for several adjacent strands. 

 
Figure 6: Diagram showing re-entry of multiple adjacent strands  

 
In [9, p. 157-205], Gerdes explores a style of sand drawing that can contribute to the thinking 

involved in this design process. Sona were traditionally created in certain African tribes during story-
telling, as a visual support. They frequently represented elements of the story, and were created by 
running a finger between previously marked grid points, as illustrated in Figure 7 (left). The design is 
constituted of a number of parallel lines connected at the edge in a “re-entry” similar to that in Figure 6. 
In addition, (right), the lines can be re-interpreted as bypassing each other “over” or “under” as in mat 
weaving.  
 

              
Figure 7: Example of Sona: line drawing (left) and corresponding interlace pattern 

 
As previously noticed, the simplest and most stable design is achieved by using the “plain weave” 

structure, but it is by no means the only option. Figure 8 shows the same pattern using a wider strand. It 
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results in the mono-monomino tessellation. The diagram on the right shows the colouring according to 
strand direction. 
  

           
Figure 8: Sona re-interpreted as mat weaving; coloured according to strand direction 

 
 Through the use of 2-coloured ribbon, emphasis on strand direction can be preserved whilst creating 
the design with a single strand. This works because the re-entry technique involves a 45° fold of the 
ribbon, reversing its colour at the same time as it changes its direction by 90°, as shown in Figure 9.  

 
Figure 9: Re-entry of strand: application using 2-coloured ribbon 

 
Monolinearity: The concepts inherent to Sona [9] explain how only one strand might weave an entire 
surface. Figure 10 shows two completed Sona drawings in which multiple strands were needed. In both 
these cases, a single strand will not complete the pattern. The condition for what [9] calls monolinearity 
(i.e. “composed of only one line”, (p. 1616) is that 1 be the highest common factor between the two 
dimensions, i.e. they be co-prime. 
 

 
Figure 10: Individual Strands in various dimensions of Sona mat weave:  

a 6×6 square requires 6 (left); a 3×6 rectangle requires 3 (right) 
 

The designs of Figures 7 and 8 are monolinear because their dimensions are 11×12, where 11 and 12 
are co-primes.  
 

                                                 
6 See also [19, p. 48] for an analogous problem. 
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Synthesis 
 
All the ideas discussed in the above sections can be incorporated into a single piece of weaving. Figure 11 
shows a dichromic mono-hexomino weave where the colouring associated with the strand direction is used 
to create the individual tiles. Figure 12 shows the template for the same design, laid out to create a 
monolinear, re-entrant version of the tessellation (left), and the pattern in its 2-coloured ribbon version. 
 

 
Figure 11: Dichromic weave of mono-polyomino using Froebel’s gift 

 

           
 Figure 12: Template (left) for and 2-coloured ribbon version (right) of  
 a 7×8 monolinear, re-entrant, dichromic mono-hexomino weave 
 

Workshop Activity 
 
In the workshop, participants will explore the processes described above, following a simplified, parallel 
process. In particular, there will be some time given to exploring mono-polyomino tessellations, selecting 
a polyomino and seeing if it can be tessellated into a dichromic regular pattern, then preparing a template 
and weaving the tessellation, using either Froebel’s Gift #14, or 2-coloured ribbon. 
 

Conclusion 
 
Examples of educational applications of mathematics and art that are connected to symmetry often take 
the form of tessellation work, whereby children are asked to create Escher-like repeating patterns, using 
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drawing, tracing, or sometimes, computer software. The freedom of these media in terms of possible 
forms makes the exercise one of reduction to what is possible in crystallographic terms. In contrast, with 
the use of a context such as mat weaving (as defined in the text), the constraints of the material and 
technique as well as the abstract mathematical ideas play into the design process. In fact, the interaction 
between the two sets of constraints (material and mathematical) creates a “third space” that can be 
educationally very rich and can appeal to multiple modes of learning. 
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