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Abstract

Studying polyhedral forms is essential for mathematicians, architects, scientists, biologists, even artists, and for 
children it can be a lot of creative fun.  This workshop will  show that dihedral  kaleidoscopes are useful tools  for 
teaching mathematical concepts  to a range of age groups.  Workshop participants will experience creating a paper 
orthoscheme (also  called: simplex, plug, quantum of shape, symmetry unit) and discover that polyhedra can be 
understood as products of kaleidoscopic reflections and rotations of such a simplex, see Coxeter [3].  The workshop 
will  conclude with the collective creation of a paper polyhedra out of individualized, i.e. decorated simplexes. This 
transient sculpture will serve as visceral proof of the polyhedral consequences of symmetry operations.

Introduction. This workshop will provide educators with a hands on, experiential method for teaching 
mathematical concepts to students of varying age and receptivity.  The use of cost effective classroom 
manipulatives: dihedral kaleidoscopes and paper models of orthoschemes will be demonstrated and 
encouraged.

Workshop Activity

Simplex really:  A set of kaleidoscopes and orthoscheme plugs will be available for immediate viewing 
of the 27 polyhedra.  Each workshop participant will be given a template of a plug, a Symmetry Unit Net 
(see Figure 3) of a truncated tetrahedron; to assemble and view in a kaleidoscope.  Of these, twenty four 
of the individually decorated quanta of shape will be collected and conjoined to make the whole 
polyhedron.  The floor will be open to discussion on classroom use of these manipulatives for varying 
ages and sophistication of students.

Pieces of Pi or Pieces of 8?

How 3 sets of 3 become 27.  Each kaleidoscope’s three mirrors are cut from a rational subdivision of a 
circle.  Three kaleidoscopes are made with 3 sets of 3 mirrors intersecting at angles defined by the centre 
angles of the tetrahedron, octahedron and icosahedron, Figure 1.  The tetrahedron’s mirror set is cut from 
4/8 of a circle, the octahedron’s from 3/8 and the icosahedron’s from 2/8 for a total of: 9/8 of a circle.  (Is 
there a connection to be made with the whole tone of music? To Pirates?)

Figure 1: The Centre Angles of Structure found in 9/8 of a circle
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The patterns of Figure 1 when cut, folded and joined along the free edge form a set of irregular tetrahedra 
with great  circle arcs delimiting a void.  With the mirror surfaces on the inside of the void, polyhedra can 
be modeled by introducing an orthoscheme plug between the reflecting surfaces.  The orthoscheme is that 
smallest slice of the polyhedron, a quantum of shape that  when copied with the symmetry operations: 
reflection and rotation, becomes the whole solid.  In these kaleidoscopes one sees an image of the front 
side of a polyhedron, see Figure 5.

Polyhedral Families.  With these 3 mirror assemblies we can show kinship by kaleidoscope symmetry 
between 27 classical geometric forms: 5 platonic, 11 archimedean and 11 catalan, Figure 2, included in 
Palmer [7], an e-handout (pdf) for workshop participants.

Tetrahedral Family (2of 3)

Tetrahedron F4     V4       E6 Tetrahedron F4     V4       E6

Octahedral Family (2 of 12)

Octahedron F8      V6      E12 Hexahedron or Cube F6      V8      E12

Icosahedral Family (2 of 12)

Icosahedron F20    V12    E30 Dodecahedron F12    V20    E30

Figure 2: Kaleidoscopic kinship: rows = duals with topological features: Faces, Vertices and Edges

3D to 2D: Derivation of an Orthoscheme

The derivation of a tetrahedral orthoscheme is framed in Figure 3; instructions on reading the figure 
follow.  The text that teachers use with different  students to teach this material will of necessity vary, to 
accommodate individual levels.  The multiple synonyms of orthoscheme used in this paper underline the 
need to find appropriate language for the target  audience.  During the workshop, participants will have 
hands on experience assembling and decorating one orthoscheme, a truncated tetrahedron; viewing their 
simplexes in a kaleidoscope; and collectively constructing the complete polyhedron from individualized 
orthoschemes.  For the complete set of 27 orthoscheme derivations, see the e-handout.

Reading Figure 3

Verso.  The left page of Figure 3 names the polyhedron from which we derive its orthoscheme.  The 
chosen Profile, one of many possible projections, matches the smallest  hole in a plane that  this 
polyhedron could pass through (inspired by the game TetraToss).  The shaded area in the profile 
represents the part  of an orthoscheme that contributes to the polyhedral face(s).  The Net is one of many 
possible layouts for flattening the polyhedra’s surfaces onto a plane.  The shaded area referencing the 
orthoscheme is repeated in the net diagram.  Cut, fold and tape the Net to model the polyhedron.  The 
Symmetry Unit Net graphs the ‘folding to the plane’ of the orthoscheme from within a polyhedral face 
(blue).  This quantum  of shape links the shaded area (polyhedral surface planes) and the three axial planes 
connecting these surfaces to the polyhedron’s centre, its origin.  Cut, fold and tape the Symmetry Unit Net 
to produce the orthoscheme plug.  Build enough plugs (24 tetrahedral, 48 octahedral, 120 icosahedral) and 
you can paste them together to model a polyhedron.  Remember the enantiomorphs!

Recto: Orthoscheme  Analysis.  Unique to each polyhedron, the orthoschemes are reduced to various 
components described on the right side of Figure 3.  A list of angular and linear values are echoed by 
simple graphics and referenced to an Index  of unique trigonometric functions (Figure 4).  In the graphics 

Palmer

626



I have maintained a standard use of colour and line weight  to assist in reading the relationships.  These 
colours are lost  in the Bridges B&W proceedings.  The diagrams at  a simple level are for appreciating the 
visual proportions of: line, angle, area, and shape of the component parts of an orthoscheme.

Figure 3: Tetrahedral orthoscheme derivation and analysis

The Radii, in sets of 3 to 5, identify the: circumsphere - red; intersphere - green; insphere - blue; and 
intermediate spheres less rigorously defined - black.  The polyhedral Edges - thick blue.  The Centre 
Angle  Fan (top right) maps the orthoscheme’s axial plane triangles onto the cutting planes of the mirror 
assembly folded flat; the polyhedral faces (the shaded areas, Verso) degenerate to edge(s) perpendicular to 
the page.  The radii become the cuts that  produce the Sinuses required in constructing the orthoscheme 
from a flat  piece of paper.  These axial plane triangles are reproduced in various clusters to visually 
practice with their proportions.  Similarly Dihedral  Angles, Face  Angles and Sinus Angles are graphed 
to accompany the tabular data; again, for visual practice.

F# Function Radians Degrees

T12 acos(1/3) 1.231 70.529

O53 atan(√2)-1 0.615 35.264

I63 atan(1/φ) where φ=(1+√5)/2 0.554 31.717

Figure 4: Numbers Index - excerpted - select values from Figure 1
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The Indexes:  Figure 4 is an excerpt of the full table included in the e-handout.  These tables include the 
39 tetrahedral, 118 octahedral, the 144 icosahedral numbers arising from the orthoscheme analyses.  The 
functions can be used to calculate these values to any desired accuracy and they should serve students 
interested in the numerical basis of polyhedral symmetries with repeated encounters of transcendental 
numbers, e.g. the golden ratio.

Notes on Constructing Dihedral Kaleidoscopes

Material  Considerations:  A practical set of classroom kaleidoscopes needs to be: cheap, safe, and  sized 
to fit  both young hands and orthoschemes constructed from a single sheet of bristol board.  First  surface 
mirrors are optically best although glass can shatter and draw blood.  I use thin aluminum sheet with a 
highly reflective surface purchased from luminaire manufacturers.  It  is lightweight and can be accurately 
cut.  It  can be backed by a rigid foam, to hide sharp edges and taped together, to rapidly assemble the 
mirror pieces into a functioning dihedral kaleidoscope.

Conclusion

Classroom Usage:  I have presented this material to elementary & junior high students and an 
undergraduate industrial design class.  From this exposure to students’ needs and abilities, I offer these 
conjectures on which students might benefit from Pieces of Pi in the classroom.  For the students of:

• Craft: a 3D quilting bee, promoting hand eye coordination and collective creation;
• Architecture: an introduction to space frames and space fillers, see Critchlow [4];
• Rock: an introduction to crystallography, chemistry and the whole tone, see Smith [9], Ashton [2]
• Life: a look at viral protein shells and tensegrity in organelles, see Ingber [5];
• Industrial design: enantiomorphism (just because!), see Kappraff [6];
• Number theory: trigonometry, topology, and symmetry, see Ash & Gross [1];
• Geodesy: an introduction to great circles, Dymaxion Maps and the geoscope, see Palmer [8].

Figure 5: A virtual icosahedron: Rhinoceros render of 4 surfaces by the author, 2005
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