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Abstract 
We present a novel origami model similar to David Mitchell’s Columbus Cube.  

Several pieces can be used to form a put-together puzzle in a variety of ways.  

We explore the mathematical aspects of designing the compound model.    

 

 

1.  Introduction 
 

The motivation of our investigation is an origami model by internationally known paper folder 

David Mitchell titled "Columbus Cube" [3] – a cube design with an inverted corner – shown in 

Figure 1.  Using several pieces of this model, compounds of cubes can be formed; examples are 

the "Ring-Of-Five-Cubes" and "Ball-of-Cubes" models (see [3]).  In [2] we determined the exact 

geometry for these models and for a collection of similar compounds of Platonic polyhedra, 

which exhibit characteristics of put-together puzzles. 

 
A cube may be inverted/dimpled at an edge instead of a corner.  Several cubes, each inverted at 

an edge, may be assembled to form a ring (see Figure 2) provided that the geometry of the 

dimples satisfies some criteria.  The dimples may not be uniform, and for us, this is the interesting 

case, since then the order of the cubes in the ring is not arbitrary and the assembly of the 

compound will not be a trivial matter.  In this paper, we present an origami model for a cube 

inverted at one of its edges, as well as an algebraic result that may help the paper folder, using 

this model, to design a ring of cubes of a particular shape.  The ring obtained this way can be 

viewed as a put-together puzzle with varying levels of difficulty depending on the geometry of 

the design. 

 

2.  Origami 
 

In theory, one may consider any compound of  intersecting polyhedra  and  describe its geometry. 

Figure 1:  Columbus Cube. 

Figure 2:  Five cubes forming a ring. 

Bridges 2010: Mathematics, Music, Art, Architecture, Culture

367



For origami models the configuration must be foldable in some reasonable way.  One important 

requirement is that the intersection be symmetric in order for our model to be foldable, that is, the 

dimple is the mirror image of a portion of the solid about a plane that cuts through the solid.  This 

configuration has a good chance to be foldable unlike a non-symmetric intersection which in most 

cases is not possible to fold in any simple manner.  For the dimpled cubes in this paper we have a 

simple folding solution.  First think about how 3 copies of the 1 x 4 piece in Figure 3 could be 

used to form a cube.  This design is essentially the same as the “Jackson Cube” where 6 pieces 

are used, each of size 1 x 2 (the diagram in Figure 3 cut in half at its vertical axis of symmetry), 

see [3].  In the assembly one would make certain that all three pieces alternate between being 

“over” and “under”.  We add creases to form a dimple as shown in Figure 4 (with solid lines for 

valley folds, and dotted lines for mountain folds).  Note that the angle and depth at which the 

cube is dimpled can be controlled by appropriately placing these additional creases.  The 

assembly of the dimpled cube may be challenging at first; some readers might find it easier to use 

a version based on the Jackson Cube (cut each piece in half in Figure 4). 

Figure 5 shows a folded and assembled model.  The dimple has two rectangular and two 

triangular sides providing sufficient support for the cube that is inserted here to stay in place – no 

glue or tape is needed.  Note that this cube may be positioned in two different ways as a member 

of a ring.  In a design, one might have assumed that it is face F that will be on the inside surface 

of the ring, however, it is possible to turn the cube in such a way that face G will end up there.  

This fact may be used to increase the challenge for anyone trying to assemble the ring since it is 

unlikely that using some of the cubes in the “wrong” way will lead to a perfect fit.  At the same 

time, it may be better to prevent this kind of confusion; and we can do so by using three different 

colors for the three strips of paper in Figure 4, so that the inside of the ring would be required to 

have a particular color. 

 

3.  Shapes and Sizes 
 

The geometry of the ring of cubes that we are interested in can fully be described in two 

dimensions.  A square will represent each cube and adjacent squares will have a symmetric 

intersection as shown in Figure 6.  The symmetry requirement for the intersections translates to 

having equal distances, shown as xi in the diagram, for each pair of adjacent cubes.  We ask the 

following question:  For what values of naaa ...,,, 21  do rings of cubes exist? 

 

Figure 3:  Folding a cube. 

Figure 4:  Folding a cube with a dimple at an edge. 
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Figure 5:  A cube inverted at an edge. 
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This may be of interest to an origamist who wants to control the shape of the ring of cubes.  We 

will assume that the ai satisfy the generalized triangle inequality so that these distances can be the 

sides of a polygon.  For a given set of the distances ai there are n - 3 degrees of freedom that may 

be used for varying n - 3 of the angles of the polygon.  For an actual model we would set these 

angles which together with the xi would define the dimples and the shape of the ring.   

Assuming a unit edge length for the cubes (squares), if a ring of squares can be formed, then the 

xi satisfy the following system of linear equations: 
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Surprisingly, parity of n makes a difference.  If n is odd, the rank of the coefficient matrix is n, 

and if n is even, the rank is n – 1.  Thus, there is always a unique solution for n odd, and there are 

infinitely many solutions for n even provided that the ai satisfy the equation 
 

nn aaaaaa ...... 42131 . 

 

To check these statements, successively subtract row i from row i + 1 for i = 1, 2, … , n – 1 in the 

augmented matrix.  Then, the solutions are given by 
 

),,...,2,1()1(
2

1

2

1

1

)(mod niax
n

j

j

nji

i  

if n is odd, and  

),1,...,2,1()1()1(
2

1
)1(

2

1

arbitrary; 

1

)(mod11 niaxx

x

i

j

j

nji

n

ii

i

n

 

 

if n is even.  It is worth noting that the matrix of the system above is a circulant matrix and 

systems of linear equations with such left-hand sides can be solved using the Discrete Fourier 

Transform (see P. J. Davis [1]).  We require all xi to be nonnegative.  By reducing all ai by the 

same percentage, we can always achieve this, while preserving the relative sizes of ai (which may 

be important for a design with a particular shape).  However, even with all xi positive, it may not 

be possible to fold every dimpled square.  No matter how small (or large) the ai are, it may 

happen that for some of the squares (cubes) two corners (edges) would be forced to participate in 

the dimple – call this a non-simple intersection –, for which we do not have a simple folding 
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Figure 6:  Squares representing cubes. 
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solution.  Figure 7 shows the case of n = 3 with the inside of the ring forming an isosceles triangle 

(a1 = a, a2 = a3 = b).   The reader can verify that if ,72.12
6

74
arctan  then the two 

squares will have a non-simple intersection regardless of the actual values of a and b.     

 
One could use rectangles (squares stretched in the radial direction) to find a way around this 

problem; the folding diagrams for the corresponding stretched cubes would require only minor 

changes relative to Figure 4. 

  

4.  Conclusion 
 

Results presented in this paper are helpful in understanding and designing the details for a family 

of put-together origami puzzles.  These puzzles are three-dimensional models made of cubes, 

however, the essential part of their geometry can fully be described in two dimensions.  Hence, 

there is a two-dimensional version where the cubes are replaced by squares and the resulting 

puzzles may be viewed as a type of tangram.  The 3D origami models may offer a more satisfying 

experience, and they can also be displayed as decorative items.  

 

It may be possible in some cases that the arrangement of the cubes in an order that is different 

from what we had in the original design still works; the cubes may fit perfectly together to form a 

ring in more than one way.  Thus, it would be useful to find a description of how the geometry of 

the ring ),,,( 21 nA  AAR  affects the set of permutations 

 

S(R) = {p Sn | (Ap(1), Ap(2), … , Ap(n)) form a ring in this order}.  
 

For an actual model (2D or 3D) we need to have some control over S(R).  There should not be too 

many or too few possibilities (permutations) to try.  For n (= the number of pieces) as small as 4, 

we can design puzzles that are sufficiently challenging with a 1 in 6 chance for success.  The 

number of possibilities, )!1(n , grows quickly with n, but if S(R) is also large, we may have an 

entertaining rather than frustrating puzzle.  We encourage the reader to design his or her own 

ring-of-cubes puzzle. 
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Figure 7:  Non-simple intersection. 
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