Bridges 2010: Mathematics, Music, Art, Architecture, Culture

The Vitruvian Figure of Eight

Joel C. Langer
Mathematics Department
Case Western Reserve University

joel.langer@case.edu

Abstract

The remarkable hidden symmetry of the Bernoulli lemnisegdpeals to the mind and eye alike, and presents an
opportunity to straddle the line between art and mathematic

1 Introduction

The best known plane curve resembling the symbol for infirifg thelemniscate of Bernoullilt is named
after James Bernoulli, who considered the integral for tn@es arclength in his early work on elasticity
theory (1694). The same arclength integral led to disceseby Count Fagnano (1718) and Euler (1751)
on the addition theorem for elliptic integrals, the key whagpened up the theory of elliptic integrals and
functions. Following Gauss's theorem (1796) on constbletpolygons, Abel’s result (1827) on subdivision
of the lemniscate gave the curve a place in the history obatgand number theory. (See [3], [5] and [6].)

It is surprising that a curve with such a history is not bekieown as a beautiful geometric object in
its own right. The obvious elegance, symmetry, and assouiatith infinity bestow on the lemniscate an
undeniable mystique. In fact, hidden within itself, thevaicarries a much richer structure. As explained in
the last section, itis hardly a stretch to say that the lecatésis intrinsically alisdyakis dodecahedrendual
to the great rhombicuboctahedron—with 48 triangular fa¢8sedges, and 26 vertices, which are permuted
by the full octahedral group of symmetries. After providimgef mathematical and historical background,
we offer a visual explanation of the lemniscate’s strugtimd-igures 3, 4. (Mathematical details are given
in[2].)

2 Elementary Constructions: Linkagesand the Like

The lemniscate equation may be writted +y?)2 = A(x> —y?) (or, in polar coordinates? = Acos ). The
pair of tangent lines to the double point at the origin is espnted by the quadratic testh— y?> = 0. With
A = 2¢?, the lemniscate has two additionaintercepts(++/2c, 0), and pair offoci f. = (+c,0).

A simple “draftsman’s tool” for drawing the lemniscate mag/ designed as in Figure 2 a). The device
is in fact a special case of thharee rod linkageconsidered by James Watt (1784), who was interested in
converting rotational motion into linear motion. For thenlgiscate, the two end rods have lengtBc and
pivot about the focif., while the middle rod of length@has no fixed end but is hinged to the first two rods.
The pencil is mounted at the midpoint of the middle rod. Asehd rods rotateoppositely in circles with
centersf., the pencil traces out the lemniscate.

The ingenious linkage of Peaucellier (1864) achieved Wattal of interchanging rotational and linear
motion. It would also enable a draftsman to construct (aro§rthe lemniscate from the rectangular hy-
perbolax? — y? = ¢?/2 (andvice vers, as shown in Figure 2 b). The two rods in the figure with piviot a
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Figure1: a) The infinity machine; b) Peaucellier’s inverter.

the origin have equal length > ¢ and the remaining four rods have length v/L2 — c2. The two “stylus”
(circled) joints of the Peaucellier linkage maintain “inse” positions with respect to thaircle of inversion
x2 +y? = ¢? (dashed). As a transformation, inversion maps a point wallarpcoordinategr, ) (r > 0) to
the point(c?/r, 8) on the same ray from the origin with (scaledgiprocal radius (For Watt and Peaucellier
linkages, see [4], [7].)

Figure 2: The lemniscate as the special Cassiniad,d= c2.

The lemniscate and hyperbola related by inversion sharsatime pair of focif. = (0,+c). As for the
meaning offoci we recall thestring construction of the ellipseGeneralizing the circle (whose “two foci”
coincide), the ellipse may be described as the locus of poire sum of whose distances from the foci is a
given constant; + d, = 2C > 2c. Likewise, the distances to the foci along the hyperboleefaeonstant
difference d; — d, = 2C < 2c. Finally, aCassinian ovamay be defined as the locus of points fiteduct
of whose distances from the foti = (0,£c) is a constantl;d; = C2. The lemniscate is the Cassinian with
C = ¢; smaller values & C < c give pairs of “orbits”, one around each stin, while larger value€ > ¢
give single orbits around the double sffar. For sufficiently largeC > c, the Cassinian is indeed oval, and
was the astronomer Cassini’s idea (1680) for planetarytoitnia (single star) solar system.
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3 Alberti’s Veil and the Extended Complex Plane

For nearly two centuries mathematicians have known thatgebeaic curve is best understood in the com-
plex projective setting, where one may take full accountlidh& complex and infinite points on the curve,
not just the “visible” (real, finite) ones. It is hard to imagi how mathematicians could have reached this
insight without the Renaissance development of perspeeatid all the geometric ideas which flowed from
it. (See [1] and [6] for different aspects of this very subsitdl connection between art and mathematics.)

We will not explain in general how such a curve may be regasge®-dimensional (Riemann) surface
in a 4-dimensional space, and how it may inherit also geaonsthucture from the latter space (tbemplex
projective plang But we will indicate, more concretely, how the full lemcéde looks topologically like
a sphere, and hastational symmetriefamiliar to us from our experience in the 3-dimensional, $bal
world. To do so, we first need to consider some key complextimme which describe the lemniscate.

To begin, we reinterpret the relationship between lemiegsaad hyperbola. From now on, for notational
simplicity, we takec = 1. Introducing the complex variable= x + iy, the lemniscate and hyperbola are
interchanged byomplex inversion g+ .#(z) = 1/z. We note that#(z) differs from circle inversion by
reflection in thex-axis, an obvious symmetry of both curves (given nowcbynplex conjugation z»> z=
x —1y). With special definitions# (0) = «, .# (o) = 0, .# (z) takes the unit circle to itself and interchanges
“inside” and “outside”. Although? (z) distorts Euclidean distance in the plane, it preserveseangind is
as nice a transformation as one could ask for; in fa&tz) may be understood as a rotation of the sphere!

What is required here is exacthlberti’s veil of Renaissance perspective. In mathematics, the standard
correspondence of points of the sphere to points in the fitakiown asstereographic projectiofrom the
north pole (theeyg. Here we require the “reverse” application of the method\liferti’s veil to transfer
features in the complex plari (the veil) to features on the unit sphexé +Y? + 72 = 1 (thescenewhich
in this case lies both in front of and behind the veil).

More explicitly, stereographic projectigm: S — C is defined by considering downward sloping rays
from the north pol€0,0, 1); the ray will intersect the sphef at a second poir® and this point is mapped
to (or identified with) the point of intersection of the raytiwthe equatorial plang = 0 (which is identified
with C). The north pole itself is sent t® by a horizontal ray. From this “spherical perspective”, pbex
inversion.# (z) simply rotates the sphere by 188bout thexX-axis.

Building on .#(2), we will also make essential use of tdeukowski map () = 3(z+ 1), named
after Zhukovsky (1847-1921) for his studies of airflow amwbstacles. The key property ¢fz) is that
it defines a smooth, angle-preserving mapping of the extéoiointerior) of the unit disc onto thslit
domainobtained by removing the intervah 1, 1] from the complex plane. In general, suminformal maps
transform 2-dimensional ideal fluid flow in one region int@ad flow in another region. In the case of
i(2), uniform, linear flow to the right is transformed into flow ara an obstacle with circular cross section
|z]> = x* 4 y* < 1. An additional application of(z) then transforms the latter into a flow around an airfoil
(wing cross section). A nice variety of airfoils may be oh&d asj-images of circles—this is the beauty
of Zhukovsky’s construction. (See [4] for discussion.gf p, and flows around obstacles, emphasizing
geometry.)

4 Metamorphosis of the Disdyakis Dodecahedron
In this section we rotate our lemniscate®9€by change of signA = —2—so that it stands upright like a
figure of eight8. Correspondingly, we use the (conjugated) Joukowski mag) = %(z— %) =
—ij(iz), below. We give adqlockwisé “storyboard” explanation of the symmetry and structure of
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Figure 3: Metamorphosis of the Disdyakis Dodecahedron (clockwia fpper left).
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the lemniscate as a disdyakis dodecahedron, based on th@mgsgliscussed above, and radial
projection onto the sphere. The following comments may tekxplain themetamorphosis of the
disdyakis dodecahedrpRigure 3, in more mathematical terms:

1. Radial projection of the disdyakis dodecahedron (upet) gives the tiled sphere (upper
right), with 48 congruent spherical triangles, wgeodesic edgeand angles 45 60°, 90°.

2. Stereographic projection from the north pole gives trengulated complex plane (middle
right); the angles are the same and the non-straight eddks tfiangles” are arcs of circles.

3. The (extended) complex plane consists of the triangdilatet discD (lower right) together
with its congruent imagender complex inversior¥ (z), the exteriofe of the unit circle.

4. The inverted Joukowski may’ (z) = ¥ (j_(2)) = % takesD onto the “slit plane’S; (lower
left) andE onto an identical copg» ~ S;. The slit (dashed) extends from= i up toco, and
from z= —i down too, and may be thought of as a “collapsed circle”, foldedtat with
left and right edges both containirg the images of the points1 in the previous figure.
Thus, the 7 -image of the entire complex plane consists of two “sheeaiafy(one of which
is shown), which are zipped together along the slit.

5. TheVitruvian figure of eigh{middle left) consists of lemniscate, circle, hyperbolag &y
axes. These were regarded above as separate plane culatsi(by Peaucellier); now they
are but traces of the full lemniscate (with equatiotB2 + 2y? + y?a? = 0, in suitable com-
plex coordinates), each trace a “mirror” of reflection synmneBut the enigmatic Vitruvian
eight hides the existence tiie second shedglued to the back?), without which the full
symmetry is lost (leaving square and hexagon still visiklergptic scaffolding).

Not to get too serious, we have invok®druvian Man (1487), Leonardo Da Vinci’s iconic
study of proportion, symmetry and hidden mathematical nmggin the figure of man, inspired by
the writings of the Roman architect Vitruvius. But matheicetcuriosity played no small part in
the Renaissance imagination; Da Vinci (a brilliant studdmolyhedra) would surely have allowed
even the figure of eight to hold meaning, beauty, and a hintysfteny.

5 ThelLemniscate for its Own Sake

Works of Gauss (1827) and Riemann (1854) on intrinsic diffiéial geometry made it possible to
discuss thehapeof a curved surface without the need to view the surface “file@outside”. Given
aRiemannian metricone can measure distances and angles on the surface,gkdohesicgpaths
of shortest length), compute the surfac&aussian curvature Ketc. The same idea, suitably
generalized, was exactly what Einstein required for hisrprietation of gravity in terms of the
intrinsic curvature of 4-dimensional space-time, and thiéed treatment of light rays and inertial
motion of particles as geodesics.

What is the lemniscate’s intrinsic geometry as a surfacenfdex curve)? In its own right,
the lemniscate may be viewed as a topological sphere (frselhtersections), with Riemannian
metric inherited from complex projective space. At somamihe lemniscate is positively curved
(K > 0) like a sphere of radiuB = 1/+/K; at others, the lemniscate is negatively curviéc<( 0),
like a potato chip.

The two contour plots oK in Figure 4 reveal the remarkable symmetry of the lemniscate
Here, the standard sphere serves as reference space forgptegionsK; < K < Kj1 (left), and
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the same regions are shown stereographically projectealtbetplane (right); in both plot¥
has constant value along the (dark) “boundary curves”. Watithe curvature function’s critical
points with respect to theuboctahedroifl) on the left: Six maximanax= 2 at centers of fourfold
rotational symmetry; eight minimiéni, = —7 at centers of threefold rotational symmetry; twelve
saddle pointKsagqie= —1/4 at the centers of twofold rotational symmetry. (The lakevalues
are unexpectedly simple.)

The 26= 6+ 8+ 12 critical points are the vertices ofRiemannian disdyakis dodecahedron.
For the lemniscate also turns out to have exactly nine simipleed geodesics of reflection sym-
metry (represented by circles and lines on the right sidegire 4), which are subdivided by the
26 vertices into the 72 edges of 48 congruent geodesic taantie latter 45 60°,90° “tiles” are
simply transitively permuted by the full octahedral symmefroup of the lemniscate, and define a
non-constant curvature analogue of #482 tiling of the sphere already pictured in Figure 3.

Figure4: Gauss curvature of lemniscate on reference sphere and plane
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