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Abstract 
 

When in 1980 Benoit Mandelbrot described the z→z2+c formula, many mathematicians and programmers tried to 
expand the Mandelbrot Set into the third dimension. But all of them where stopped by the non-equivalence in 3D to 
the 2D complex product (a+bi)·(c+di), something that was well known since times of mathematician W. R. 
Hamilton. Also, as the 80’s computers where not able to produce the calculations needed to represent an image of 
that kind, all research moved towards other fractal fields. It was in 2007 when the search was recovered by means 
of a controversial algorithm using algebra based on spherical coordinates triplets {ρ, φ, θ} (module, longitude and 
latitude). Although, from a strict mathematical point of view, the process is not correct, the stunning images of the 
3D set, especially when raised to higher polynomials z→zn+c soon became an iconic fractal named Mandelbulb. 
The expansion of the Mandelbrot Set in 4D by means of quaternions is also possible. Recent experiments reveal 
that adequate projecting surfaces provide an infinite group of projections into 3D.  

 
 

The Origin of the Mandelbrot Set 
 

The origin of the Mandelbrot Set formula may be placed in the early twentieth century when 
mathematician Pierre Fatou (1878-1929) became interested in the iteration of the equation c→c2+k, where 
c and k are complex numbers with k a constant value. Years after, Gaston Julia (1893-1978) studied how 
iterating that formula generated a set now known as a Julia Set, whose boundary of infinite length was 
impossible to draw by hand at that time, even considering it as a finite curve. 
 

 
 

Figure 1: Graphic Evolution of the Mandelbrot Set between 1980 and 2000. 
 

Bridges 2010: Mathematics, Music, Art, Architecture, Culture

247



The appearance of the Mandelbrot Set on the cover of American Scientist in 1985 coupled with the 
proliferation of inexpensive personal computers made it enormously popular amongst the BASIC and 
FORTRAN programmers of that decade.  
 
The emerging interest created under the intricate geometry and enormous complexity of the Mandelbrot 
Set then turned towards the creation of variants and tweaks of the set [1]. Perhaps the most remarkable 
was the expansion of the quadratic equation to higher exponents: z→zn+c. 
 

 
 

Figure 2: The Mandelbrot Set variant  z→zn+c  for values n=3, 4, 9 and 13. 
 
 

Towards a Three-Dimensional Mandelbrot Set 
 

Finding a three-dimensional equivalent of the Mandelbrot Set was undoubtedly one of the obsessions of 
the mathematicians of that time. But soon that search was cut short by the lack of an Algebra that could 
operate with a triplet variable {a, b, c} in R3 similarly to the pair of values (a+bi) existing in the realm of 
complex numbers C2. 
 
We are able to define the complex variable product (a+bi)·(c+di) : 
 

(a, b)·(c, d) = (a c – b d, a d + b c) 
 
But there is no analogous way to multiply two triplets {a, b, c}·{d, e, f} of real numbers corresponding to 
two points in 3D space. Nor it is possible to square them, so it is not possible to calculate exactly the 
equation z→z2+c extended to three dimensions. 
 
In fact, this is nothing new; restrictions in 3D algebras were well known a long time ago. The 
mathematician Arthur Cayley (1821-1895) demonstrated in the Cayley-Dickson Construction that starting 
from the body of real numbers one can generate a series of algebras in which each has a dimension double 
than the previous. That is, there is an algebra for real numbers, with dimension 1, an algebra for complex 
numbers with dimension 2, an algebra for quaternions, with dimension 4, an algebra for octonions with 
dimension 8 and so on. 
 
Dimension three is excluded from this sequence and although other algebras exist in three dimensions, 
they lack the necessary algebraic structure for calculating a Mandelbrot-like Set. In other words, complex 
numbers inherit the properties of addition and product of real numbers: Commutativity, Associativity, 
Distributive Law, Neutral Element and Unit Element but there is no analogous algebra for dimension 
three. 
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Many mathematicians and programmers gave up this search. Furthermore, personal computers of the era 
did not have the numerical speed and graphic capabilities to perform the necessary calculations to 
represent a 3D analogue of the Mandelbrot Set in a reasonable time. But recently the massive thrust of 
computer graphics has led to some interesting advances in generating and viewing three dimensional 
fractals or fractal-like structures. 
 
 

From 2D to 3D: First Approaches 
 

Although the formula z→z2+c cannot strictly be extended to three dimensions, it is feasible to find other 
procedures based on the search for alternatives to reproduce it graphically. But here we encounter an 
important problem; both Fatou and Julia iterated the formula z→z2+c in order to study its convergence 
and divergence in the complex field, but never made a description of its geometric characteristics. 
Mandelbrot publicized the set that now bears his name and sensed its intricate geometry, but he did not 
specify its construction by means of a purely geometrical process [5]. 
 
Later, mathematicians Adrien Douady, John Hubbard, Michal Misiurewicz and John Milnor set some 
properties permitting the calculations of elements like the main cardioid, disks and bulbs, the basins of 
attraction, critical points, antennas and small copies of the Mandelbrot Set [3]. These data led us to have 
an idyllic vision of a 3D version of the Mandelbrot Set, but did not provide enough information to 
materialize it. 
 
That is why for almost 30 years scientists and fractal enthusiasts hardly experimented with the analogs of 
the Mandelbrot Set in 3D. However, this did not prevent the more restless programmers from 
experimenting with certain tweaks in three-dimensional space. Two examples are the height field maps 
based on the measurement of the potential of the Mandelbrot Set or the projection into the Riemman 
Sphere. Obviously, despite the spatial appearance of these figures, their calculation was made starting 
from iteration in the complex plane, later mapped into the 3D space using well-known mapping functions. 
 

   
 
Figure 3: Two primitive three-dimensional approaches for the Mandelbrot Set. a) Height field based on 

the potential of the Mandelbrot Set. b) Projection of the complex map into the Riemman Sphere. 
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The White/Nylander Formula 
 

In 2007, Daniel White proposed a method to implement the equation z→z2+c into three dimensions. It 
was based on observing the geometrical behavior of the product in one and two dimensions so as to 
extend it successfully into three dimensions. More specifically he was interested in squaring the variable 
z2, which was proved to be impossible by means of analytic ways [6]. 
 
Let us imagine the one-dimensional squaring operation as a mapping that stretches a distance along a line, 
when values are greater than 1 and shrinks it, when values are less than 1. The case of the product in the 
two-dimensional complex field is more sophisticated, as it is based on rotation. Let us suppose we square 
any complex number, for example 0.2+0.3i : 
 

( 0.2 + 0.3 i ) 2 = − 0.05 + 0.12 i 
 
If we find the angle with X coordinate axis and the modulus of number  (0.2+0.3i) : 
 

angle = ArcTan [ 0.3 / 0.2 ] = 56.31º 
modulus = Sqrt[ 0.22 + 0.32 ] = 0.36 

 
we verify that the solution (−0.05+0.12i) is a complex number composed with a rotation of 112.62º, twice 
the angle of 0.2+0.3i (2 × 56.31º) and modulus 0.13, square of the modulus of 0.2+0.3i (0.362). 
 
From this observation, White suggested that the rotation that appears when squaring a complex number 
could be extended to three dimensions using the spherical coordinates as an equivalent expansion.  
 
The spherical coordinates use a modulus ρ and two angles: longitude or azimuth represented by φ and 
latitude or elevation angle, represented by θ (note that in some literature symbols are swapped). Thus, the 
triplet value for the three-coordinate system is represented as {ρ, φ, θ} and squaring is defined as  
 

{ρ, φ, θ}2 = {ρ2, 2φ, 2θ} 

            
 

Figure 4:  a) The squaring of the complex number 02+0.3i is expressed geometrically as a rotation 
doubling the angle and squaring the modulus. The result is -0.05+0.12i.  b) White proposes that the 

equivalent of this process in 3D is the composition of two rotations expressed in spherical coordinates. As 
it happens in 2D, the rotation angle (φ and θ) is doubled and the modulus is squared. 
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Since there is a well-known relationship between Cartesian and Spherical coordinate systems, we may 
define the squaring of a Cartesian triplet by calculating its modulus, ρ, and angles, φ and θ. 
 

ρ = sqrt( x2+y2+z2 ),    θ = arctan( y/x ),   φ = arcsin( z/ρ ) 
 

{ x, y, z }2 = ρ2 { cos(2θ) cos(2φ), sin(2θ) cos(2φ) , -sin(2φ) } 
 
Triplet addition is no problem since it follows the Cartesian system:  
 

{x, y, z} + {c1, c2, c3} = {x+c1, y+c2, z+c3} 
 
Then we can easily generate a formula to reproduce in 3D space the Mandelbrot Set z→z2+c. The final 
equations have been polynomialized to improve the performance of computer programs: 
 

newx = c1 + x2 – y2 – z2 

newy = c2 + 4xyz / sqrt( y2 + z2 ) 

newz = c3 + 2x ( -y2 + z2 ) / sqrt( y2 + z2 ) 
 
Fortunately, the Euclidean distance behaves in a very similar way under 2D and 3D, so the divergence 
condition to break the iteration |z|>2 may be easily referred as: 
 

sqrt( x2 + y2 + z2 ) > 2 
 

 
 

Figure 5:  Three views of the Mandelbrot Set in 3D seen from (1,0,0), (0,1,0), (0,0,1). 
 
 

So, Is It Really the 3D Mandelbrot Set? 
 

Not really. The plots do not produce the kind of results fractal experts expected to find. There are things 
that seem to work well, as the plane z = 0 containing the 2D Mandelbrot set, But in some areas of the set 
there's a huge lack of detail while other areas are too messy. Also the location of some bulbs looks 
unnatural. 
 
However, despite its limitations, the 3D Mandelbrot Set has received an overwhelming response from the 
fractal community, especially from [6] under the moderation of David Makin. Much of the success of this 
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new 3D Mandelbrot is due to the work of Paul Nylander, who improved Daniel White’s formula and 
proceeded to define with rigor the algebraic properties necessary to confirm his formula as the top 
candidate to be acknowledged as 3D Mandelbrot Set. 
 

       
 

Figure 6:  Two different versions of the White / Nylander formula for the Mandelbrot Set in 3D. 
 
But from a rigorous point of view there are several reasons to disqualify the candidacy of this formula to 
be the 3D expansion of the Mandelbrot Set. First, the original Mandelbrot Set was defined in 2D, so it is 
only a flat figure. Its author, Mandelbrot has never published any detailed reference to its 3D extension 
and unfortunately there is not enough geometrical information in the 2D formula to generate a 3D analog. 
 
Second, the 3D expansion of the product is not sufficiently justified. If we understand the 1D product as a 
stretching and the 2D product as a rotation, it appears that 3D product would be something like a super-
rotation. But the non-commutative composition of two rotations doubling its angles and squaring the 
modulus seems to be a forced solution for an unanswered problem. 
 
Finally, there are many steps in which subjective decisions are taken. For example, by applying rotations 
in different order, from different axes and different angles, different results are given. Although all 
rotation formulae are mathematically correct, they do not strictly represent the 3D Mandelbrot Set, just a 
similar but different thing. In many cases, processes like the distance estimation method or the coloring 
techniques were taken on purely aesthetic criteria, helping the survival of the more beautiful set, but not 
necessarily the correct one. 
 
 

The Mandelbulb 
 
Another of the successes of Paul Nylander was his interest on the 3D expansion of equation z→zn+c, as it 
was made 20 years ago in 2D complex formula. Thus the triplet {ρ, φ, θ} is raised to nth power:  
 

{ρ, φ, θ}n = {ρn, nφ, nθ} 
 

{ x, y, z }n = ρn { cos(nθ) cos(nφ), sin(nθ) cos(nφ) , -sin(nφ) } 
 

Given the limited appeal of the Mandelbrot Set quadratic formula in 3D there were no high hopes placed 
on plots with other exponents but, surprisingly, there appeared a new iconic fractal type called 
Mandelbulb, looking similar to an asteroid of rich structure and great detail. 
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Figure 7:  Mandelbulbs with formulae  z→z8+c,  z→z12+c  and  z→z20+c . 
 

  
 

Figure 8:  a) Mandelbulb  z→z8+c  b) Surface detail of z→z12+c. 
 
 

The Mandelbrot Set in 4D 
 
William Rowan Hamilton (1805-1865) spent part of his life trying to find a three-dimensional analog for 
complex numbers [2]. After many disappointing attempts he conceived the idea of quaternions, a natural 
extension of complex numbers in 4D. A quaternion is expressed as  q = a + bi + cj + dk  satisfying the 
equation  i2 = j2 = k2 = i j k = −1. Quaternions inherit from complex numbers all its properties, except that 
quaternions product is non-commutative, for example  q1·q2 = m,  while  q2·q1 = −m. 
 
The general formula for Julia fractals works perfectly in 4D by means of quaternions producing a wide 
range of fractal shapes (Figure 9a). Orthogonal projection on 3D space is made easily by simply ignoring 
one dimension [4]. Surprisingly, when this technique is applied to the 4D Mandelbrot Set, the result is a 
disappointing figure based on the revolution along X axis of the 2D Mandelbrot Set (Figure 9b). 
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Figure 9:  a) Quaternion Julia Set  b) Quaternion Mandelbrot Set. 
 
Ongoing research in the University of the Basque Country confirms that the apparent lack of interest 
shown in Figure 9b is due to the wrong choice of projection surfaces to create visual interesting 3D slices 
of the 4D Mandelbrot Set. Making one dimension equal to zero produces a very simple projection of the 
4D Set into 3D (Figure 9b). As an example, imagine projecting a 3D cube into 2D by looking it from a 
viewpoint perpendicular to one of its faces; the result will be a square. So, other projecting planes are 
required instead of just making null one dimension. 
 
Making an exhaustive computation of the four variables {i, j, k, w} of the quaternion space and projecting 
the 4D Mandelbrot Set over a basic 4D plane of equation ai+bj+ck+dw=0, it has been proved that there is 
more activity than reported in the fractal forums, as shown in the projections of Figure 10. The main 
problem by introducing the fourth dimension in the calculation is the enormous increase of processing 
needs and the difficulties of selecting an adequate projecting surface. 
 

 
 

Figure 10:  2D projections of the 4D Mandelbrot Set by performing a four variable computing. 
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