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ü  Introduction

This notebook contains computations and proofs for some of the properties of the generating functions GkHxL, for 1§k, whose
coefficients appear to be the numbers in the columns of Table 2 that I present in the paper "Combinatoria Poetica: Counting and
Visualizing Rhyme Patterns in Sonnets".  The generating functions are presented in two ways: (i) as products of linear hyperbolic
functions, and (ii) as power series with coefficients that can be expressed in a closed form.  

In the first section I show calculations for the counts in Table 2 of the paper using the formula for the coefficients of the generat-
ing functions.  In the second section I implement the generating functions in Mathematica  as products and compute the Taylor
expansions for the first seven generating functions using the Mathematica  function Series[ ].  The counts for poems of up to 14
lines with even end rhyme patterns are covered by this computation.  In the third section I establish a recurrence relation for the
generating functions and conclude by establishing the same recurrence for the coefficents of the associated power series.

ü  The Generating Functions Gk Hx L
(1) The generating function  GkHxL  for the kthcolumn 8ci+k, k<ir0  in the Even Rhymes Triangle is

GkHxL  =  ⁄i=0
¶ ci+k, k xi  =  ¤j=1
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(2) The closed form expression for the ith coefficient ci+k, k of the kth generating function GkHxL  is
ci+k, k  =  1
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therefore, the kth generating function GkHxL can be written as
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ü  Section 1: The Counting Function  evenRhymesNumbers[n , k]

The function evenRhymesNumbers[ ] implements the closed form expression for the coefficients of the generating functions
GkHxL, 1§k:
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In the function implementation the term i+k is replaced by the variable n.  Note that  Factorial2[2k]  is equivalent to 2k k! .



Clear@evenRhymesNumbersD
evenRhymesNumbers@n_, k_D := Which@n < k, 0, n ã 1, 1, True,
2êFactorial2@2 kD Sum@H-1L^Hk + jL Binomial@2 k, k + jD j^H2 nL, 8j, 1, k<DD

Clear@evenRhymesTableD
evenRhymesTable@n_, k_D := Table@evenRhymesNumbers@a, bD, 8a, 1, n<, 8b, 1, k<D
TableForm@evenRhymesTable@7, 7DD
1 0 0 0 0 0 0
1 3 0 0 0 0 0
1 15 15 0 0 0 0
1 63 210 105 0 0 0
1 255 2205 3150 945 0 0
1 1023 21120 65835 51975 10395 0
1 4095 195195 1201200 1891890 945945 135135

Clear@evenRhymesTriangleD
evenRhymesTriangle@n_D := Table@evenRhymesNumbers@a, bD, 8a, 1, n<, 8b, 1, a<D
TableForm@evenRhymesTriangle@7DD
1
1 3
1 15 15
1 63 210 105
1 255 2205 3150 945
1 1023 21120 65835 51975 10395
1 4095 195195 1201200 1891890 945945 135135

ü Section 2: The Coefficients of the Power Series Gk Hx L
The function g[  ]  defines  the  generating functions GkHxL   as  products  of  hyperbolic  functions;  the  first  seven instances are
displayed.

Clear@gD
g@k_, x_D := Product@H2 j - 1LêH1 - j^2 xL, 8j, 1, k<D
TableForm@Table@g@k, xD, 8k, 1, 7<DD
1
1-x

3
H1-4 xL H1-xL

15
H1-9 xL H1-4 xL H1-xL

105
H1-16 xL H1-9 xL H1-4 xL H1-xL

945
H1-25 xL H1-16 xL H1-9 xL H1-4 xL H1-xL

10395
H1-36 xL H1-25 xL H1-16 xL H1-9 xL H1-4 xL H1-xL

135135
H1-49 xL H1-36 xL H1-25 xL H1-16 xL H1-9 xL H1-4 xL H1-xL

The corresponding power series expansion columnPoly[ ] using the two functions Normal[ ] and Series[ ] computes the Taylor
series expansion of g[ ] about x=0 up to degree d; the first seven instances of polynomials of degree five are displayed.

columnPoly@k_, x_, d_D := Normal@Series@g@k, xD, 8x, 0, d<DD
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TableForm@Table@columnPoly@k, x, 5D, 8k, 1, 7<DD

1 + x + x2 + x3 + x4 + x5

3 + 15 x + 63 x2 + 255 x3 + 1023 x4 + 4095 x5

15 + 210 x + 2205 x2 + 21120 x3 + 195195 x4 + 1777230 x5

105 + 3150 x + 65835 x2 + 1201200 x3 + 20585565 x4 + 341809650 x5

945 + 51975 x + 1891890 x2 + 58108050 x3 + 1637971335 x4 + 44025570225 x5

10395 + 945945 x + 54864810 x2 + 2614321710 x3 + 112133266245 x4 + 4521078857295 x5

135135 + 18918900 x + 1640268630 x2 + 114359345100 x3 + 7061340371085 x4 + 404779703328000 x5

ü Section 3: Properties of the Generating Functions Gk Hx L, 1 £ k

ü A Recurrence for the Product Formula for the Generating Functions Gk Hx L, 1 £ k

CLAIM:
The recurrence for the coefficients ci+k, k for the power series functions:
ci+1, 1 = 1 for all 0 b i,
ci+k, k = 0 for all i < 0 and 1 b k, and
ci+k, k = (2 k - 1) ä ci+k-1, k-1 + k2 ä ci+k-1, k for all 0 b i and 1 b k,
implies the product expression 

GkHxL  =  ⁄i=0
¶ ci+k, k xi  =  ¤j=1

k 2 j - 1

1- j2 x
 

of hyperbolic functions for the generating functions.

PROOF:
Note that as a consequence of the recurrence when i=0, the equalities  c1, 1= 1 and ck, k = (2k - 1) ck-1, k-1, for all k > 1, holds.  

BASIS OF INDUCTION:  k = 1 :
G1HxL  =  ⁄i=0

¶ ci+1, 1 xi = ⁄i=0
¶ xi = 1

1-x .

INDUCTION STEP:  k > 1 :
Starting with the power series expansion for GkHxL:
GkHxL  =  ⁄i=0

¶ ci+k, k xi  =   ⁄i=1
¶ IH2 k - 1L  ci+k-1, k-1 + k2 cHi-1L+k, k M xi + ck, k x0  

= (2k - 1) ⁄i=1
¶ ci+k-1, k-1 xi +  k2x ⁄i=1

¶ cHi-1L+k, k xi-1 + (2k - 1) ck-1, k-1 x0

= (2k - 1) ⁄i=0
¶ ci+k-1, k-1 xi +  k2x ⁄i=0

¶ ci+k, k xi

= (2k - 1) Gk-1HxL +  k2x GkHxL ,
therefore, from (1 - k2x) GkHxL = (2k - 1) Gk-1HxL  or   GkHxL = 2 k - 1

1- k2 x
Gk-1HxL

the product formula follows.

ü The Recursion Relation for the Closed Form of the Coefficients of Gk Hx L, 1 £ k

CLAIM:

The coefficients  ci+k, k = 1
2k-1 k!
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 I j2Mk+i   for the power series functions satisfy the recurrence:

ci+1, 1 = 1 for all 0 b i,
ci+k, k = (2 k - 1) ä ci+k-1, k-1 + k2 ä ci+k-1, k for all 0 b i and 1 b k.

PROOF:
The claim is proved by induction on k using the closed form expression for the ith coefficient ci+k, k:

ci+k, k =  1
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 I j2Mk+i  ,  for all 0 b i œ  and all 1 b k œ .
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PROOF:
The claim is proved by induction on k using the closed form expression for the ith coefficient ci+k, k:

ci+k, k =  1
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BASIS OF INDUCTION:  k = 1 and all 0 b i :
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INDUCTION STEP:  k > 1 and all 0 b i :
Starting with the right hand side of the recurrence and simplifying the expression establishes equality with the left hand side.
(2k-1) ä ci+k-1, k-1  + k2 ä ci+k-1, k 
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= ci+k, k
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