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Abstract 
 

Although choreographers may employ mathematical principles when creating dances, overt 
attention is seldom given to the mathematics by either the audience or the choreographer. We 
will examine the mathematical elements in several of the author’s recently choreographed 
dances in which mathematical ideas were embedded purposefully and with the intent that the 
mathematics be at least somewhat visible to the audience. Two of the dances included 
elements of proofs, and all but one are part of the show “Harmonious Equations,” which 
premiered in 2008. 

 
 

Introduction 
 

Choreographers often use mathematical principles when creating dances, though usually little overt 
attention is given to these connections by either the audience or the choreographer. In this paper we will 
examine the mathematical elements in several of the author’s recently choreographed dances. In these 
dances the mathematical ideas were embedded purposefully and with the intent that the mathematics be 
visible to the audience. Two of the dances included elements of proofs, and the all but one that we will 
look at are part of the show “Harmonious Equations,” which premiered in 2008.  
 
 

The Sum of the Internal Angles of a Polygon 
 
In one case the dance utilized a kinesthetic “proof,” perhaps better described as an explanation in 
movement, that the sum of the internal angles of an n-sided polygon is  π(n–2). The author and sarah-
marie belcastro used the proof described below when they performed a short dance composition as part of 
a 2008 lecture demonstration [1]. The dance uses simple ballet or modern dance steps and turns. 
 
 Suppose the internal angles are 
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overall sum must be 2π, which is the result of walking all the way around the polygon:  
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 Then the algebraic rearrangement of this expression gives us  
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 Some of the algebraic steps in this proof might be replaced with kinesthetic “steps,” as follows. 
Suppose one walks facing forward along the first side, from vertex v7 to vertex v1, turns through the 
internal angle of the polygon a1, walks facing backward from v1 to v2, and continues in this way for one 
circuit around the polygon, alternately facing forwards and backwards along sides (Figure 1). 

 
Figure 1: Kinesthetic proof of the internal angle sum of a polygon. 

 
 If there are an odd number of sides, as in the top diagram in Figure 1, then one ends up facing 
backwards on the first side after the last internal turn. Note also, in the example shown, the turns through 
the internal angles are all counterclockwise, while one circuit around the polygon proceeds clockwise. It 
is easy to see what the total sum will be if we imagine that the sides are all laid out along a straight line, 
as shown on the bottom of Figure 1. Then the total angle sum will be nπ. However, in bending the path 
back to the shape of the polygon, so that the final copy of the first edge coincides with its first copy, and 
in the same direction, we will need to add one total turn in the opposite direction, which must have 
measurement –2π. Here we assume that the “winding number” in the clockwise direction is one turn, not 
multiple turns. So the total sum of the internal angles of the polygon must be 

! 

n" # 2" = (n # 2)" . This 
“proof” is easily demonstrated by dancing around the edges, and that is how we used it in the short 2008 
composition, in which we proceeded around the edges of a triangle. Of course, here we have implicitly 
used the fact that the sum of the external angles, each measuring the difference between the straight line 
of angles and the internal angle that is its supplement, is 2π; but the experience of turning forwards and 
backwards n times, minus the ultimate 2π rotation, is accomplished physically. 
 
Gauss-Bonnet formula. In that event in 2008, the author also danced a short circular dance phrase 
verifying that the sum of the angles of a spherical triangle obeys the Gauss-Bonnet formula. In this case 
the degenerate “triangle” had its vertices on the equater of an imagined unit sphere, so that each of the 
three turns at vertices measures π. Then the Gauss-Bonnet formula says that  
 

(triangle area)(Gaussian curvature) + π = angle sum 
 
Because the area of the sphere is 4π, this particular triangle with its vertices along the equater is really a 
hemisphere, and has the area of a hemisphere. Also, the curvature of the unit sphere is 1, so 
 

(2π)(1) + π = angle sum = 3π 
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It would be interesting to find a kinesthetic demonstration of the Gauss-Bonnet formula that works for a 
variety of surfaces, not just a demonstration of one instance.  
 

 
Harmonious Equations 

 
A series of short mathematical dances were created by the author as part of “Harmonious Equations,” 
directed by Keith Devlin [3], in December of 2008. In this hour-length show Keith gives short verbal 
explanations of seven important equations, which are then translated into songs composed and sung by 
the a cappella choral group Zambra. A trio of dancers performs to the musical composition. In the 
remainder of the paper we will look at the mathematics embedded in these dances. 
 
Pythagoras’ Theorem: a2 + b2 = c2. In the duet dance accompanying this equation our dancers used the 
dissection proof of the Pythagorean theorem found by Henry Perigal (1801-1898), shown in Figure 2 
(Frederickson [4]). It is based on a dual tiling of the plane, first by the smaller two squares of sides a and 
b, then overlaid by a tiling by squares with sides equal to hypotenuse c. In the dance we used squares of 
sides 3, 4, and 5 to connect with Zambra's use of this classic right triangle within their song. This 
dissection proof is also very similar to that of the Arab mathematician Thabit Ibn Qurra (836-901 AD). 
 

 
 

Figure 2: Perigal’s dissection proof of the Pythagorean theorem. 
 
 In this duet, each dancer wields  two Styrofoam quadrilaterals, shown light gray in Figure 2; the 
smaller square with side 3, shown darker here,  is mounted on a post, on which it rotates. The dancers 
make a variety of shapes with the quadrilaterals, finally making the side 4 square, then surrounding the 
side 3 square to make the side 5 square. In future performances we plan to find a way to make visible to 
the audience the fact that we are working with the 3, 4, 5 right triangle. 
 
Area of a Circle: Area = πr2. We can see how much longer the circumference of a circle is than its 
diameter, by forming our arms into a circle, then spreading them wide. This also gives us an approximate 
value for π. The joints of the shoulder and arms are such that one may swing the arm in a circle, with the 
arm functioning as the radius around the central point at the shoulder joint, and it is fun to play with ways 
the two arms might make such circles in the air at the same time. For this section of Harmonious 
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Equations we utilized synchronized arm circles, static circles with the arms, and circular floor patterns to 
create a composition suggesting various danced aspects of circles. 
 
 
Einstein’s equation: E = mc2. We certainly could not use radioactive decay, the phenomenon explored in 
Einstein’s 1905 paper that contained the famous equation, so we chose the next best thing, fluorescence, 
the understanding of which was greatly furthered by another of Einstein’s 1905 papers on the particulate 
nature of light. In this section we used lines “painted” with white cloth tape on black costumes, and 
illuminated by black lights, while creating shapes that shimmer and finally “explode,” in accompaniment 
to Zambra’s score. 
 

Leibniz’s series 
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the mathematician Madhava Sangamagrama of Kerala, India (1350-1425), whose discovery preceded that 
by Gottfried Liebniz (1646-1716) by 300 years [5]. We played with the swing time of Zambra’s music for 
this section by using a rhythm game popular among children. In that game, taught to the author by 13 and 
14 year old girls when he was dance faculty at a summer ballet workshop, the participants repeatedly play 
a short rhythm on plastic water bottles, which they pass one person to the right around a circle at the end 
of each rhythmic phrase. In our dance we used 8 inch “gator foam” (hardened foam core) cubes, showing 
four sides to the audience. One side is colored yellow, one blue, one black, and the fourth is also black but 
includes a portion of the Liebniz equation.  
 
 We developed a complicated set of switches of the boxes, performed while playing rhythms based on 
those of the water bottle game. Keeping track of these switches involves symmetry group theory, an area 
of mathematics concerned with such “transpositions.” Though perhaps not directly relevant to this 
equation, group theory was developed by the mathematician Galois to decide whether certain families of 
equations are solvable at all.  
 
 The boxes are placed in a line on a table facing the audience, and manipulated by three dancers, each 
of whom grabs a pair of boxes during each of ten short sections of the dance. The dancers slap out 
rhythms on the boxes while switching their order and also turning one or both 90 degrees. The sequence 
of ten location switches, for the moment disregarding the turning of the boxes, is shown below using 
cycle notation. The boxes are numbered 1 through 6 in their original positions, and “*” is used to show 
composition of permutations, which really means that one permutation immediately follows another. In 
cycle notation, for example, (135642) indicates that the box in position 1 moves to position 3, 3 moves to 
5, and so on, until finally 2 moves to 1. The sequence used in the dance is: 
 

(12)(34)(56)  *  (12)(34)(56)  *  (12)(34)(56)  *  (12)(34)(56) 
* (135642)  * (identity) * (identity)  *  (12)(34)(56)  *  (12)(34)(56)  *  (12)(34)(56) 

 
 Because  (12)(34)(56)  *  (12)(34)(56)  = identity, the result of these ten permutations is really just 
(135642)  * (12)(34)(56) = (14)(36) = (14)(36)(2)(5), where (2)(5) is included to indicate that boxes 2 and 
5 really end at their starting positions. The final order of the boxes is thus 426153.  
 
 The process is further complicated by the fact that on each move each dancer might easily turn one 
or both boxes 90 degrees clockwise or counterclockwise, producing a variety of colored patterns in the 
line of boxes. If we let B = black facing, Y = yellow, L = blue, E = equation, the sequence of turns created 
the following patterns, in order: 
 

LLLLLL,YYYYYY,LYLYLY,LLLLLL,LLLLLL,BLBLBL, 
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BBBBBB,BEBEBE,BBBBBB,BEBEBE,EEEEEE 
 
 The author used this symbolic process to determine the order to place the boxes in at the start of the 
dance, though the other dancers solved the problem more easily by simply running the dance once and 
adjusting the starting position according to the locations of the boxes at the end! 
  
Euler’s polyhedron formula: V–E+F=2. In this section the dancers use the “hexastar,” a hexagon with 
an extra free edge attached at each vertex, shown in Figure 3, to create a cube, octahedron, two linked 
tetrahedra, and other shapes (Figure 4). The hexastar is made of 1-inch diameter foam-covered PVC pipe, 
in 40 inch sections, joined at the vertices by bungee cord (see [6] for further discussion of this prop.) We 
were looking for one set of twelve PVC pipes that could easily be wielded by 3 dancers. Can the reader 
visualize how to fold this structure at its vertices in order to do this? (Solutions on last page, Figure 6.) 
 

             Cube Octahedron

Tetrahedron

 
 
  Figure 3: Hexastar.   Figure 4: Platonic solids formed with the hexastar. 
 
The 6 faces of the cube and 6 vertices of the octahedron are combinatorially related to the 6 edges of the 
tetrahedron, as suggested in Figure 5. These connections are also used by Zambra in their song,. 
 

Six diagonals of the cubic faces are the edges of a regular tetrahedron.
 

 
Figure 5: The cube and the tetrahedron. 
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How to fold the hexastar into the cube, octahedron, and tetrahedra. The cube and the octahdron each 
have 12 edges, as does the hexastar, so no edge duplication is necessary. Also, since the tetrahedron has 6 
edges, two tetrahedra will have 12 edges, and no edges are duplicated. It is possible to fold it into one 
tetrahedron with each edge doubled as shown at the bottom of Figure 6. 
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Figure 6: How to fold the hexastar into cube, octahedron, and tetrahedra. 
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