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Abstract 
 
Saddle polyhedra have faces that are skew polygons, with edges that do not lie in one plane. The surface of a face 
can be undefined [1], a minimal surface [2], triangulated [3], or filled using a spidron nest [4,5]. Identifying 
circuits in three dimensional periodic networks of vertices and edges [6] with saddle faces generates space-filling 
saddle polyhedra, described in [2]. We consider these space-fillers, and by extending the concept of a spidron so it 
can be applied to the faces create forms that are visually interesting, both as individual polyhedra and in 
aggregations. 
 

 
Spidrons and Spidron Nests 

 
A spidron was originally defined as a particular infinite set of triangles that tiles the plane, and a spidron 
nest as a combination of semi-spidrons that form a hexagon [4]. This idea can be extended in a fairly 
natural way to work with any regular polygon with an even number of sides, but there are problems if the 
polygon is not regular (see later for more detailed discussion). 
Throughout this paper a polygon is considered, as in [1], as a closed circuit of edges, meeting at vertices. In 
particular a polygon is considered to be distinct from its interior. A polyhedron is considered to be a surface 
distinct from its interior. Only two faces of a polyhedron meet at any edge, but they can share more than 
one edge. 
Dániel Erdély discovered that the interior of a hexagon divided into an infinite series of similar rings, each 
consisting of six equilateral and six 120° isosceles triangles (a spidron nest), can fold so that the hexagons become 
non-planar. By noticing that a cube can be dissected along a skew hexagon he was then able to construct a space-
filling octahedron [7]. If the skew hexagons are simply triangulated then the polyhedron that is generated is the 
first stellation of the rhombic dodecahedron, which is a well-known space-filler [8]. If a minimal surface is used it 
corresponds to Pearce's #40, figure 8.55 in [2], which is used in his space-filling #4, illustrated in his figure 8.68. 
In fact spidron nests can be folded in many different ways, since each ring can turn either clockwise or 
counter-clockwise. Usually the choices are made in a consistent way so that the spidronised polygon 
appears as a many-armed spiral in relief. However the choices are made, in a space-filling, faces that 
coincide must correspond, so that a clockwise ring matches a counter-clockwise ring. This has important 
consequences. 
In order to make spidronised versions of  the faces of the saddle polyhedra used by Pearce  we need to consider 
their edges, which are usually skew polygons. As long as the skew polygon is regular (equilateral and 
equiangular) it is not too difficult to construct a corresponding spidron nest. In fact, within certain limits, there are 
two degrees of freedom, which can be thought of as the angles of one of the triangles in the dissection. 
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Unfortunately it is more usual to need skew polygons that are not regular, even to make a single polyhedron 
before the constraints of space-filling are considered. There is an obvious construction that generates visually 
satisfying forms, but in general the spidron nests produced cannot fold.  
Start with a polygon, which may be skew. Usually it will have some rotational symmetry, so there is an 
obvious centre, but it may be necessary to make some more or less arbitrary decision about which point to 
take as the centre. Make a copy of the polygon, scale it down by some factor towards the centre and rotate it 
by some angle. Triangulate the region between the two polygons by joining every point on the original 
(outer) polygon to the images of its two neighbouring vertices. Apply the similarity transformation (scale + 
rotation) to the resulting surface, which, by construction, will fit inside. The transformation can be repeated 
indefinitely to give a series of rings that converge towards the centre. The set of images of any point lies on 
a logarithmic spiral.  
 
 

Constructing Space-filling Polyhedra 
 
The faces of any polyhedron can be spidronised using this construction, and because the (arbitrary) rotation 
around the axis can be in either direction, there are clockwise (CW) and counter-clockwise (CCW) versions 
of the nests. For a single polyhedron there is no restriction on how these versions are chosen, but in a space-
filling, faces that meet must match. Looking from the outside of the polyhedra a CW face is matched by a 
CCW face. We want to choose these orientations so that the number of different spidronised polyhedra is 
minimised, if possible with a single spidronised form for every copy of a polyhedron in a space-filling. This 
is often quite difficult to achieve, and sometimes impossible. 
Pearce [2] lists 42 space-filling systems using a total of 54 polyhedra with 34 different polygons as faces, 
but he acknowledges that this list is not exhaustive. Figure 1 shows all these faces, with the skew polygons 
spidronised. For each space-filling a translational unit can be identified that generates the complete space-
filling by translations only. The translational unit consists of one or more basic repeat units, which are the 
smallest aggregations of spidronised polyhedra that fill space by themselves. Generally the numbers of 
polyhedra in the repeat unit are given in space-filling ratio listed in Pearce, but there are circumstances 
when twice as many are needed because of the requirement for equal numbers of CW and CCW versions of 
a face, for example in a space-filling that uses a single type of polyhedron with an odd number of faces. 
The situation that can occur when (unspidronised) faces are enantiomorphic is rather less obvious. An 
enantiomorphic face is a three dimensional object, rather like a helix, so that right-hand, R, and left-hand, L, 
forms can be interchanged by reflection, but in no other way. The process of spidronisation is essentially 
two dimensional, and CW and CCW forms can be interchanged by a 180° flip. Since R faces must meet 
with R faces (and L with L) we can consider each type separately, so a polyhedron with an odd number of 
R faces behaves like a polyhedron with an odd number of identical faces, and the requirement for an equal 
number of CW and CCW versions implies an even number of different spidronised forms of the polyhedron. 
Some space-filling polyhedra listed in Pearce have faces that are not enantiomorphic, having mirror 
symmetry, but they are two-sided, in the sense that their appearance is not conserved under a 180° flip. 
Such polygons can be spidronised in two ways, either with the “A” side CW, or the “B” side CW.  Since in 
a space-filling the “A” side of a polygon must meet the “B” side of its mate, all that is needed is to use the 
same spidronisation throughout, and CW will always meet CCW. 
All of the saddle polyhedral space-fillers in Pearce can be constructed applying these general principles, but 
they can have different consequences. Two examples illustrate the main points. 
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Figure 1: Total set of 34 nests for spidronised space-filling polyhedra 

 

 
 

Figure 2: Two sides and the chiral versions of the decagonal spidron-nest (n10a) 
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Example 1 - The Decatrihedron (The Triamond Space-filling) 
 
Pearce's first space filler has three skew decagonal faces, hence his name of decatrihedron. The decagons 
are circuits in the triamond  lattice [9], hence its classification as [10, 3]. Although the decagons are 
equiangular, with an included angle (G-angle) of 120°, they are not regular, so the spidronised version is 
rather different from previously published examples (Figure 2). 
The polyhedron faces come very close to each other so some care is needed in choosing the parameters 
(scale factor and rotation angle) to construct the spidron-nest so that intersections are avoided. 
Since the polyhedron has an odd number of faces two different spidronised forms are needed, and the basic 
repeat unit consists of two polyhedra with four external faces (Figure 3). There are three ways to achieve 
this. The two external CW faces can be from the same polyhedron, or there can be one face from each. In 
the latter case moving between faces of the same type (CW or CCW) involves a screw rotation of 90° along 
a helix that can be of either sense. Of course there is further variation if we consider the two possible 
alternatives for the internal faces. As Figure 2 indicates the decagon is chiral, so it has two enantiomorphic 
forms, either of which can be used to construct the polyhedra, so the final space-filling can be of two forms. 

 
 

Figure 3: Joining two spidronised decatrihedra (one of the three possibilities). Middle faces omitted. 
 

Example 2 - A More Complicated Example 
 
One of the most complicated examples is Pearce’s #41, which has a basic repeat unit consisting of ten 
polyhedra. Finding the correct orientation for each spidron-nest is far from easy. In one sense the internal 
faces are easier since they could be oriented randomly and the basic repeat unit would still work, but they 
should be chosen so that each polyhedron appears as only one spidronised form. There are 16 such internal 
face to face meetings. The basic repeat unit has 60 outer faces, and there are seven different directions of 
translation to neighbouring repeat units.  
Four of the nests are of the “mirror” type with “A” and “B” sides described above. This makes things 
slightly easier, since the unspidronised structure determines the orientations of the spidrons. 

 
 

Figure 4: The spidron nests used in making Pearce’s space-filling #41. 
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Figure 5: The spidronised polyhedra used in a basic repeat unit of #41, and the assembled unit 
 

 
 

Figure 6: A piece of Pearce’s space-filling #41, coloured to show the basic repeat units 
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Tables 
 
The following tables summarise all 34 nests and 42 space-fillings described by Pearce, and provide details of spid-
ronised versions. There are two errors in Pearce’s space filling ratios which have been corrected (marked with *). 
 

Nest 
code Used in polyhedra Used in spacefillers Polygon Group Symmetry G-angles 

Zome 
Code 

n3a 52 cubocta   36 3-gon flat 3-fold 3x60 GGG 
n3b 02 09 26   24 29 32 3-gon flat no symm 90;54.7;35.3 BG2Y 
n3c 04 07 09   08 13 32 3-gon flat mirror 54.7;70.5;54.7 YYB 
n3d 10   32 3-gon flat mirror 45;90;45 BBG 
n4a 30 33 34 cubocta   17 20 21 36 37 38 4-gon flat 4-fold 4x90 BBBB 
n4b 12 35 36   03 15 19 4-gon regular 2-fold 4x70.5 YYYY 
n4c 14 43   05 16 42 4-gon regular 2-fold 4x60 GGGG 
n4d 02 15 28   24 27 4-gon enantio 2-fold 2x(45;90) BGBG 
n4e 03 13 14 26 32 44 51   16 23 26 29 37 39 42 4-gon mirror 2-fold 2x(60;90) GGGG 
n4f 04 27   06 08 4-gon enantio 2-fold 4x54.7 BYBY 
n4g 03 05 24   18 39 4-gon mirror mirror 60;90;90;90 BBGG 
n4h 08 20   28 4-gon mirror mirror 109.5;54.7;90;54.7 BBYY 
n4i 07 16   09 13 4-gon enantio no symm 90;54.7;54.7;90 BBB2Y 
n4j 09 10 23 39   32 33 4-gon enantio no symm 90;45;54.7;54.7 B2Y2BG 
n5a 18 22   12 31 5-gon flat mirror 90;90;180;90;90 GBBG2B 
n5b 21 22 42   30 31 5-gon mirror mirror 5x90 BGGB2B 
n6a 19 46 53   07 14 25 41 6-gon flat 6-fold 6x120 6xG 
n6b 11 25 38 47   02 10 15 22 34 35 6-gon regular 3-fold 6x109.5 6xY 
n6c 24 43 49   05 18 20 42 6-gon regular 3-fold 6x60 6xG 
n6d 24 40   04 18 6-gon regular 3-fold 6x90 6xB 
n6e 17 30 31 52 53   17 25 36 38 41 6-gon mirror 2-fold 2x(90;120;120) 6xG 
n6f 06 25   22 34 6-gon mirror 2-fold 6x109.5 no zome! 
n6g 18 41   11 12 6-gon mirror mirror 6x90 2x(GGB) 
n6h 19   14 6-gon mirror mirror 2x(90;90;120) 2x(GGY) 
n6i 38   10 6-gon mirror mirror 2x(70.5;70.5;109.5) 6xY 
n8a 32 33 49 51   20 26 37 42 8-gon mirror 4-fold 4x(60;90) 8xG 
n8b 29 35 37 47   15 35 40 8-gon mirror 4-fold 4x(70.5;109.5) 8xY 
n8c 17 46   07 17 41 8-gon mirror 2-fold 8x120 8xG 
n8d 37 45   40 8-gon mirror 2-fold 2x(90;144.7;109.5;144.7) 2x(GGYY) 
n10a 01   01 10-gon enantio 2-fold 10x120 10xG 
n12a 31 34 50 53   21 25 38 41 12-gon mirror 4-fold 4x(90;120;120) 12xG 
n12b 36 48   19 12-gon mirror 4-fold 4x(70.5;144.7;144.7) 4x(YYG) 
n12c 46 50   07 21 41 12-gon mirror 3-fold 12x120 12xG 
n12d 48   19 12-gon mirror 3-fold 12x144.7 6x(YG) 

 
Table 1: The 34 nests 

 
Nest Code: an identifier based on the number of edges. 
Used in polyhedra: referred to Pearce's table 8.1, also used in Table 2. 
Used in spacefillers: referred to Pearce's table 8.2, also used in Table 2. 
Polygon: taken from Pearce. 
Group: there are 4 kinds of nests: flat, regular, mirror and enantiomorphic. 
Symmetry: taken from Pearce. 
G-angles: between adjacent edges (rounded to 1 decimal place). 
Zome Code: Zometool [10] struts used to make a model. 2Y means two Yellows in the same line. 
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1 1     1                n10a E 2 4 4 4 

2 11     1        n6b         R 1 4 4 2 

3 12       1           n4b             R 1 4 4 6 

4 40       1           n6d             R 1 8 8 1 

5 43     1        n6c n4c       R 1 10 4,6 2 

6 27     1                n4f E 2 10 6+4 8 

7 46       1       n6a       n12c n8c       M 1 14 4,4,6 2 

8 4       1       n3c               n4f E 2 4 2,2 12 

9 16     1                n4i E 1 4 2+2 12 

10 38     1        n6b   n6i      M 2 10 4,6 1 

11 41       1               n6g         M 1 8 8 1 

12 18       1       n5a       n6g         M 1 4 2,2 4 

13 7     1     n3c          n4i E 2 4 0,2+2 4 

14 19     1     n6a      n6h      M 2 6 0,6 2 

15 47 35     1 3         n4b n6b n8b         M 1 26 12,8,6 1 

16 13 14     1 2 *       n4c   n4e         M 1 8 4,4 1 

17 30 17    1 2 *   n4a      n6e n8c     M 1 10 2,6,2 1 

18 5 24    1 1       n6c n6d n4g      M 2 10 8,2,0 1 

19 48 36     1 3         n4b   n12b n12d       M 1 26 12,6,8 1 

20 49 33     1 3     n4a   n6c   n8a         M 1 26 12,8,6 1 

21 50 34    1 3    n4a      n12a n12c     M 1 26 12,6,8 1 

22 6 25    1 1       n6b   n6f      M 1 6 2,4 2 

23 13 44     3 1             n4e         M 1 18 18 1 

24 15 2     1 4     n3b               n4d E 1 8 8,0 6 

25 53 31    1 3    n6a      n6e n12a     M 1 38 8,24,6 1 

26 51 32    1 3           n4e n8a     M 1 30 18,12 or 24,6 1 

27 28 15     2 3                     n4d E 1 14 8+6 2 

28 8 20     4 3             n4h         M 1 12 6+6 2 

29 13 26    1 4    n3b      n4e      M 1 14 10,4 6 

30 21 42    2 1           n5b      M 1 12 6+6 1 

31 21 22     1 2     n5a       n5b         M 1 8 2,6 1 

32 9 10     2 1     n3b,n3c,n3d             n4j E 1 6 2,0,2,2 12 

33 23 39    3 2               n4j E 1 14 8+6 4 

34 6 25 11   1 1 2      n6b   n6f      M 1 10 6,4 2 

35 47 29 11   1 1 2       n6b   n8b         M 1 22  12,10 1 

36 52 30 cubocta 1 3 1   n3a n4a     n6e         M 1 38 14,6,18 1 

37 33 32 13   1 1 1   n4a      n4e n8a     M 1 12 4,6,2 1 

38 31 34 30   1 1 1   n4a      n6e n12a     M 1 14 6,6,2 1 

39 13 5 3   3 8 12           n4e n4g       M 1 24 0,24 1 

40 29 37 45   1 3 1           n8b n8d       M 1 24  6,18 1 

41 53 46 50 17 1 2 1 6 n6a      n6e n8c n12a n12c   M 1 60 12,14,10,10,14 1 

42 49 51 43 14 1 1 2 6     n4c n6c n4e n8a       M 1 46 12,12,12,10 1 

 
Table 2: The Space-fillers 
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Space-filler: an identifier, taken from Pearce table 8.2. 
Polyhedra: as in Table 1. 
Ratio: space-filling ratio as in Pearce.  
Nests: classified by type. 
Symmetry: minimal symmetry, where E is ”smaller” or lower symmetry than M, so E < M < R < F. 
Factor SF: multiplication needed to match nests. 
Outer Nests: number of outer faces in the spidronised repeat unit. 
Types: numbers of each kind of nest (in corresponding order). A + sign means there are chiral versions. 
Factor Unit: multiplication needed to create a translational unit. 
 

Further Work 
 

The similarity transformation method has been used to construct the faces of almost all of the polyhedra 
considered. This is satisfactory so long as computer images, or models produced by rapid prototyping are 
adequate, but it would be more convenient, and cheaper, to be able to make the faces from single sheets of 
material. This means that the faces need to fold, and the behaviour of spidrons as foldable linkages, apart 
from the regular examples, is at present poorly understood. We do not even know very much about the way 
regular spidrons behave when folded in non-symmetric ways. Much remains to be discovered. 
In order to make progress through a large number of examples we have proceeded by trying to find the 
smallest aggregation of spidronised polyhedra that will fill space on its own periodically. A different 
approach would be to start from particular spidronised forms of known space-filling polyhedra, and 
determine whether they will fill space, and how.  
More detail about the 3D structure of edges and their projections will be shown on the a special CD that 
will be made available during Bridges 2009. It will also contain further Excel tables and coloured pictures 
and animations of all the spidronised space-fillings.  
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