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Abstract 

We present examples of polyhedra homeomorphic to a torus such that all of their faces are planar polygons with 

the same number of sides and all of their vertices are incident to the same number of edges. Neither the faces nor 

the polyhedra are self-intersecting. We call them regular toroids. Because of their combinatorial regularity, these 

structures may be attractive to people who find beauty in geometric patterns.  

 

It is easy to see that there are three classes of regular toroids. These classes are denoted by the 

Schläfli symbol {p, q} which means that p edges belong to a face and q to a vertex. Thus the classes 

are: {3, 6}, {4, 4} and {6, 3}. This corresponds to the fact that one can tessellate the plane by regular 

polygons in the same manner. Within each class, it is easy to construct representatives with 

sufficiently large face number. A sufficient condition for this number is that it has at least two factors 

each of which is greater than two. 

      
Figure 1: Representatives of the class {3, 6}, {4, 4} and {6, 3}, 

 with (V, E, F) = ( 42, 126, 84), (42, 84, 42), (84, 126, 42), respectively 

The question is whether these classes have representatives that do not satisfy this condition. If yes, 

which of them has the minimal number of vertices or faces?  

The vertex-minimal representative of the class {3, 6} is the Császár polyhedron having (V, E, F) = (14, 

21, 7). See [1]. We can show that in the class {3, 6} there is a regular toroid for each 7 ≤ V ≤ 12 such 

that it is non-intersecting. However, for these smaller V it is difficult to find vertex coordinates that 

meet this requirement.  

          
Figure 2: The polyhedra of the class {3, 6} with V = 7, 8, 10 and 11 

In the class {4, 4}, for the polyhedron with minimal number of faces and vertices we have (V, E, F) = 

(9, 18, 9). For the next polyhedron (V, E, F) = (12, 24, 12). The author does not know if there is a 

toroid with the face number not satisfying the sufficient condition mentioned in the first paragraph, for 

example, with F = 10, 11, 13, 14, … 

In the class {6, 3} the minimal number of faces is 7. This polyhedron was discovered by the 

author, and it was Martin Gardner who first called it the Szilassi polyhedron [2]. A metallic sculpture 

of it is exhibited in the mathematical museum of Fermat’s birth house. 

One can easily construct polyhedra in this class with face numbers 9, 12, 15, …; in general, this 

number is of the form a * b, a ≥ 3, b ≥ 3 [3]. Since 1988 we have known a toroid with 8 hexagons (see 

[4]); however, this is an overarching polyhedron, that is, for each of its faces there is another face such 

that they have two edges in common. 

  459

Chris K. Palmer
Typewritten Text

Chris K. Palmer
Typewritten Text
Open Readme for color .pdf with Euler 3D Links



    
 Figure3: Polyhedra in the class {6, 3}. Leftmost:  an overarching polyhedron with F= 8; 

 for the next one F= 9;  

the last two examples, although  both has 12 faces,  are combinatorially non-isomorphic.  

We can show that there exist regular toroids with 8, 10 and 11 faces in the class {6, 3}. It is 

an open problem whether there exists a regular toroids with  13 or 14 faces. The problem does not 

become easier with an increasing number of faces, unlike the case of  {3, 6} toroids.  

We obtained (in 1977) the toroid with 7 hexagons from the Császár polyhedron by applying to its 

faces, vertices and edges a reciprocation with respect to a sphere. Since the Császár polyhedron is 

necessarily non-convex, and the polarity is a projective geometric transformation, in the dual figure 

self-intersecting faces were produced. To explore these undesirable self-intersections, we used a 

computer-aided procedure. By varying the vertex positions of these 7-vertex polyhedra we succeeded 

in eliminating all self-intersections of any faces. These investigations, required several months with 

the computers of that time; now they can be performed within minutes. A program suitable for this 

purpose is Euler 3D (http://www.euler3d.hu/). This has made possible to find polyhedra in the class 

{6,3} that were unknown till now. If we are able to find coordinates for a polyhedron with a given 

number of faces and a given combinatorial structure, such that its dual obtained by a suitable 

reciprocation is free of self-intersections, then we can further fine-tune the coordinates with some 

”aesthetic” goals in mind. For example, we could aim for some more symmetrical appearance. The 

polyhedra in Figure 4 with face number 8, 10 and 11 are respectively the duals of the polyhedra in 

Figure 2 obtained by reciprocation with respect to a suitable sphere. 

Since the vertices of the starting polyhedra of type {3,6} have rational coordinates, and in 

applying the reciprocation one has to solve systems of linear equations, we obtain toroids of type {6, 

3} also with rational coordinates. 

      
Figure 4: The polyhedra with face numbers 7, 8, 10 and 11 of the class {6, 3} 

In the CDROM of the conference one can find the movable (Euler 3D) models of the polyhedra 

presented here; one can also read out from them the combinatorial structure and the coordinates of 

these polyhedra as well. 
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