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1. Abstract 
 

This paper looks at using the representation of small finite groups as groups of transformations of a 
compact surface of genus two or more to interest a general audience in the study of group theory. The 
ideas are presented in a very elementary way and the Portraits of Groups developed for previous Bridges 
conferences show interesting applications. 

 
2. Introduction 

 
The genesis of this paper is a talk that I gave to a non-mathematical audience in October 2007. The 
audience was primarily faculty members in the College of Liberal Arts at Towson University. Many of 
the faculty confided to me that they were afraid of mathematics and not very good at it. The response to 
the talk was very positive and everyone felt that 
they got something out of it. A PowerPoint 
presentation of the talk is available at [5]. 
 The talk should begin with a description 
of what we are going to do. Specifically, a group 
is a mathematical object like a number system. 
This part was held to a minimum. The concept 
of symmetry was discussed next. The members 
of the audience were given a set of cardboard 
equilateral triangles and pieces of paper with a 
slightly larger equilateral triangle drawn on it (as 
shown in Figure 1). The question was posed, 
how many symmetries of this equilateral triangle 
are there? The most common answers to this 
question by college students are three, five, six 
and an infinite number. A symmetry is specified  F  Cardboard Equilateral Triangle igure 1:
only by its starting and ending configuration. The paper and cardboard triangles make it easier to move 
the figure in the correct ways and it eliminates the answer infinity. This is done by saying that a symmetry 
or motion starts from the configuration shown. The triangle is picked up, moved and then set back down 
inside the outer lines again. It must also be made clear that the numbers on the triangle are not part of the 
figure, but are on the figure so that you may count the different motions that take the figure to itself. This 
also facilitates introducing the idea of composition of motions later in the talk. Note that the back side of 
the triangle has the same numbers on each corner as the front side, but they are green instead of black. 
Give the audience a few minutes to play with the triangles before asking how many motions they counted. 
Several answers are usually given. Encourage the audience to talk about how they got their count. Point 
out that "no motion" is a valid symmetry.  The audience arrives at a consensus of six motions.  

  377

mailto:jzimmerman@towson.edu


List the motions. If the audience is more 
mathematically sophisticated you can bring in the idea of 
permutations of the corners. I named each of the six motions 
with a letter; I is no motion, R and S are the rotations and V, A 
and B are the reflections. The composition of motions is 
discussed next. Several examples are presented in detail, 
moving the triangle with first one motion and then another and 
identifying the result. Specifically, R times V is the same 
motion as B or R * V = B. After several minutes of this, let the 
audience do these calculations on their own. The partially 
complete "multiplication table" in Figure 2 is distributed. 

BB

AA

VV

RISS

ISRR

BAVSRII

BAVSRI

The set of all motions with the operation of composition  
is an example of a group. This is the group of symm

Figure 2:  Multiplication Table 
etries of the equilateral triangle and it has "order" six. 

  s 

 Figure 4:  Symmetries of the Triangle   Figure 5:  Symmetries of the Triangle 
rtraits is 

This gives the audience a simple notion of a group. 
A "portrait" of a group is the division of a surface 
into equal regions that the group moves around. 
Each symmetry moves one surface region to another 
region. For the equilateral triangle these symmetries 
are rotations and reflections. The symmetry group of 
the equilateral triangle can be drawn on a sphere. 
One region of the surface is labeled the identity, and 
the other regions are labeled with the group element 
necessary to get from the identity region to that 
region. This gives a diagram as in Figure 3 and a 
model pictured in Figures 4 and 5. The models also 
show actions that preserve the orientation of the 
triangle as various light shades as in Figure 4 and 
actions that reverse the orientation as dark shades a

AB

SR

V

I

  Figure 3:  Diagram of a Portrait      
in Figure 5. Since the letters on the two sides of the cardboard equilateral triangle are of different colors, 
it is fairly easy to explain orientation to any audience.              

 
 
 At this point in the talk, some mention of the history of groups and of these po
appropriate. I mention Burnsides' 1911 book and Figure 6 shows his portrait of the Quaternion Group, 
which has order 8. Figure 7 shows a portrait of the dicyclic group of order 12. Both groups act on a 
surface with two holes in it. I also point out that these portraits cannot be drawn on a surface with fewer 
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holes in it. We say that these groups have strong symmetric genus 2. There are groups which have any 
desired genus. A group of order 16 which has three holes (genus 3) is also modeled in [3, page 134]. 

  
Figure 6:  Portrait of the Quaternion Group [1, page 396]  Figure 7:  Portrait of the Dicyclic Group [3, page 133] 
  

At this point in the talk, the audience has some idea how groups are the "algebra of symmetries". 
It is time to show them some pretty pictures. One possibility is to look at the Euclidean plane groups and 
the corresponding Wallpaper patterns. This can be done in the context of real world examples or artistic 
examples. These correspond to infinite groups, but the surface in question is the Euclidean plane. For my 
talk in 2007, I opted for more complicated finite groups on a surface of genus 2. 
 Certain groups act on a surface as a quotient of a “hybrid triangle group”. This group must be 
treated differently because one of the generators “c” reverses orientation and the other generator “x” 
preserves orientation. The image of a 
region under the action of the generator 
“x” is another region of the same color. 
Regions of the same color cannot be 
adjacent and so the portraits of these 
groups must be represented somewhat 
differently. These groups are denoted 
by  and the generators satisfy 

the relations . Since 

“x” is a rotation by

),( nmHT
1],[2 === nm xcxc

m
°360 , some adjacent 

regions would be indistinguishable. 
Therefore, a fundamental region is divided 
into two regions with slightly different 
color so that the images under “x” can be 
distinguished. These differences are 
described in detail in the paper [4]. The 
group  is infinite and it has a    Figure 8:  Polygonal representation of P),( nmHT 48  
portrait on hyperbolic space.  
 One such quotient of  is the group, P)4,3(HT 48, a group of order 48. We must start with a 
diagram like the diagram in Figure 3. The corresponding diagram for P48 is given in Figure 8. Just like in 
Figure 3, when you exit through the edge on one side, you enter another region on the diagram. Therefore, 
the diagram in Figure 8 folds up into a colored surface. This surface also has two holes in it. A model of 
this surface is included in Figure 9. The surface would be the same as the surface in Figure 6, if all of the 
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dark regions were the same color and all of the light regions were the same color. This reflects the fact 
that the quaternion group is also a quotient group of P48.  

The pictures in Figures 4, 5, 6, 7, 8 and 9 leave the audience with a sense that this material has 
interesting applications and the beginning hands-on activities give them a sense that they can understand 
it. The audience leaves with an appreciation for abstract mathematics that they may not have had before. 

 

 
Figure 9:  A model of the Group P48 [4, page 114] 
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