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Abstract

M.C. Escher consideredCircle Limit III to be the most successful of his four “Circle Limit” patterns. Two artistic or
mathematical questions have been raised: (1) what angle do the white backbone lines make with the bounding circle,
and (2) are other such patterns of fish possible? H.S.M. Coxeter provided an exact expression to the answer the first
question, and a 3-parameter family of possible fish patterns was described in Dunham’s 2006 Bridges Conference
paper. Dunham’s 2007 Bridges Conference paper provided a sequence of calculations that determine the intersection
angle for any pattern of that family. In this paper, we derive a single expression for that angle, which agrees with
Coxeter’s expression for the special case ofCircle Limit III .

1. Introduction

We recall M.C. Escher’s hyperbolic patternCircle Limit III by showing a computer rendition of it in Figure 1.
Figure 2 shows a pattern of angular fish from the family ofCircle Limit III patterns, with four fish meeting at
at both left and right fin tips. Dunham’s 2006 Bridges paper introduced the concept of a 3-parameter family

Figure 1: A rendition of Escher’sCircle Limit III , a
(4,3,3) pattern.

Figure 2: A (4,4,3) pattern of angular fish from the
Circle Limit III family.

of Circle Limit III patterns indexed by the numbersp, q, andr of fish meeting at right fin tips, left fin tips,
and noses respectively [5]. Such a pattern was denoted by the triple(p, q, r). ThusCircle Limit III and the
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pattern of Figure 2 would be called(4, 3, 3) and(4, 4, 3) respectively. Following Escher’s lead, we required
r be odd so that the fish swim head-to-tail, to create the “traffic flow” Escher desired (though the results
below also hold ifr is even and the fish “kiss”). Alsop andq should be greater than or equal to3 in order
that the fin regions define a single common point. Finally, in the style ofCircle Limit III , we place right fin
tips at the center of the bounding circle.

This paper is the culmination of a series of interactions between art and mathematics. This began in
early 1958 when the mathematician H.S.M. Coxeter sent Escher a reprint of one of Coxeter’s papers that
showed a triangle tessellation in the Poincaré circle model of the hyperbolic plane [2]. This tessellation
inspired Escher to create his “Circle Limit” patterns. In return, Escher sent Coxeter copies of those patterns.
The printCircle Limit III later inspired Coxeter to write two papers on the geometry of the backbone lines
in that pattern [3, 4]. In the issue ofThe Mathematical Intelligencercontaining Coxeter’s second paper, an
anonymous editor wrote the following caption for the cover, which showedCircle Limit III:

Coxeter’s enthusiasm for the gift M.C. Escher gave him, a print of Circle Limit III, is under-
standable. So is his continuing curiosity. See the articles on pp. 35–46. He has not, however
said of what general theory this pattern is a special case. Not as yet. [1]

We are unaware if Coxeter never described such a general theory, but that caption was the inspiration for
Dunham to describe an entire family of artisticCircle Limit III patterns in [5]. Following Coxeter’s example,
Dunham presented a sequence of calculations that computed the intersection angleω between the bounding
circle and a backbone line of a general(p, q, r) pattern [6]. However, that result was less than satisfactory
since it did not produce a single expression forω, as Coxeter’s papers did forCircle Limit III .

In this paper we find such an expression, which has two advantages: (1) it generalizes Coxeter’s expres-
sion,cos(ω) = (2

1

4 − 2−
1

4 )/2 and (2) it can be seen to be antisymmetric inp andq, a fact that is not evident
in the calculations of [6]. We note that these patterns are regular when interpreted in terms of hyperbolic
geometry, so all backbone lines of a pattern make the same angle with the bounding circle and there is only
one angle to determine for any particular pattern.

For background we first review some hyperbolic geometry used in the calculations. Then we give a
derivation of the expression forcos(ω) using hyperbolic trigonometry, as Coxeter did in his first paper [3].
Finally, we review the results and indicate directions of further research.

2. The Poincaŕe Disk Model of Hyperbolic Geometry

Escher’s “Circle Limit” patterns can be interpreted as repeating patterns of the hyperbolic plane. The hy-
perbolic plane is a surface of constant negative (Gaussian) curvature. The entire hyperbolic plane has no
smooth, isometric (distance preserving) embedding in Euclidean 3-space as was proved by David Hilbert in
1901 [8]. Thus, we must rely on Euclideanmodelsof hyperbolic geometry in which distance is measured
differently and concepts such as hyperbolic lines have interpretations as Euclidean constructs.

We will be using the Poincaré disk model of hyperbolic geometry, as Escher did in his “Circle Limit”
patterns. In thePoincaŕe disk modelthe points are just the (Euclidean) points within a Euclidean bounding
circle, which we will take to be the unit circle in thexy-plane for computational convenience. Hyperbolic
lines are represented by circular arcs orthogonal to the bounding circle (including diameters). For example,
the backbone lines lie along hyperbolic lines in Figure 2. The disk model isconformal: the hyperbolic
measure of an angle is the same as its Euclidean measure (the Euclidean measure of the angle between two
circular arcs is the measure of the angle between their tangents at the point of intersection; the angle between
circular arc and a line segment is formed by the line segment and the tangent to the arc). As a consequence,
all fish in a “Circle Limit III” pattern have roughly the same Euclidean shape. However equal hyperbolic
distances correspond to ever smaller Euclidean distances toward the edge of the disk. So all the fish are the
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same (hyperbolic) size in aCircle Limit III pattern. The Poincaré disk model appealed to Escher (and has
appealed to other artists) since an infinitely repeating pattern could be shown in a bounded area and shapes
remained recognizable even for small copies of the motif, due to conformality.

On first glance, it is tempting to guess that the backbone arcs ofCircle Limit III are hyperbolic lines.
Indeed, Escher seemed to think so — in a letter to Coxeter he wrote “... As all these strings of fish shoot
up like rockets from infinitely far away,perpendicularly[emphasis ours] from the boundary, and fall back
again whence they came, not one single component ever reaches the edge. ...” [3]. However, a careful
measurement of the backbone arcs of the fish inCircle Limit III shows that they make an angle of about
80◦ with the bounding circle. These arcs are so-calledequidistant curvesin hyperbolic geometry: curves
at a constant hyperbolic distance from the hyperbolic line with the same endpoints on the bounding circle,
and Escher accurately drew them as such. For every hyperbolic line and a given distance, there are two
equidistant curves, calledbranches, at that distance from the line, one each side of the line. In the Poincaré
disk model, those two branches are represented by circular arcs making the same (non-right) angle with the
bounding circle on either side of the corresponding hyperbolic line. Escher used only one branch for fish
backbones from each pair of equidistant curves inCircle Limit III .

3. The Calculation ofω

For the derivation of a formula forω, we generalize Coxeter’s method that used hyperbolic trigonometry, as
given in [3], but also appeal to the Euclidean representation of hyperbolic objects when needed. We start by
noting that in the general(p, q, r) case, we can take the fundamental region to be a quadrilateral with vertex
angles2π/p, π/r, 2π/q, andπ/r. Such quadrilateral with a pair of congruent opposite angles is sometime
called akite. So each(p, q, r) pattern has an associated kite tessellation, the pattern and tessellation being
hyperbolic when1/p + 1/q + 1/r < 1. Figure 3 below shows how theCircle Limit III pattern is related to
its kite tessellation.

For the derivation of the formula forω we start by assuming thatp < q (unlike Circle Limit III ), and
show that case in Figure 4 — specifically the kite tessellation for a(4, 8, 3) pattern. We will indicate below
why the derivation also works forp > q. Of course ifp = q, the backbone lines are hyperbolic lines and
ω = 90◦, an example of which is the(4, 4, 3) pattern of Figure 2.

In Figure 4, the kite to the right of center is labeledPRQR′, with thep-fold point P at the origin, the
q-fold point Q on the positivex-axis, and the2r-fold pointsR andR′ above and below thex-axis. The
x-axis is an the axis of symmetry ofPRQR′, and of the entire kite tessellation. Another axis of reflection
symmetry of the kite tessellation is the hyperbolic linem throughR and perpendicular to the hyperbolic
bisector of the angle6 PRQ (in the Euclidean terms of the Poincaré model, the tangent to the circular
arc representingm is perpendicular to the bisector of the angle formed byRP and the tangent to the arc
representingRQ). In Figure 4,RQ′ forms part ofm.

Next, in the Poincaré model, consider the Euclidean circular arc throughR andR′ that bisects (in the
Euclidean sense)6 PRQ at R and 6 PR′Q at R′. This arc is determined by requiring it pass throughR and
R′, and be tangent to the Euclidean bisector of6 PRQ (and thus it also tangent to the bisector of6 PRQ by
symmetry across thex-axis). This circular arc can be extended by reflection acrossm, since the tangent to
the arc matches the tangent of its reflection atR. In fact the arc can be extended both directions to a circular
arcb within the Poincaré disc. In a(p, q, r) fish pattern, the arcb is the backbone arc we wish to analyze.

We now show that the hyperbolic lineℓ associated tob lies to the left ofb and to the right ofP , and
thus intersects the segmentPR betweenP andR at M , as shown in Figure 4. Note thatb is symmetric
across thex-axis by its definition, and therefore so isℓ. First, we show that withinPRQR′, b lies to the
right of the hyperbolic linet determined byRR′ and thus to the left oft outside ofPRQR′. Also, sincet is
determined byR andR′, as a Euclidean circular arc, its endpoints on the bounding circle lie to the right of
the vertical chord throughR (andR′). LetT be the intersection oft andPQ, so by symmetryt makes a right
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angle withPQ. Then by one of the formulas for hyperbolic right triangles [7, page 403], applied toPRT
andQRT , cos(π/p)/ sin(6 PRT ) = cosh(RT ) = cos(π/q)/ sin(6 QRT ), sosin(6 PRT ) < sin(6 QRT )
since q > p, and thus6 PRT < 6 QRT , showing thatb lies to the right oft insidePRQR′. The tangent
to b at R makes an angle ofπ

p
+ π

2r
with thex-axis. The largest this angle can be isπ

2
which occurs when

p = r = 3, so that the Euclideanx-coordinate of a point onb aboveR (or belowR′) is greater than or equal
to thex-coordinate ofR. Thus the endpoints ofb on the bounding circle lie between the endpoints oft and
the endpoints of the vertical chord throughR. Since the endpoints ofb are to the right of the vertical chord
(andb is symmetric across thex-axis), ℓ must stay to the right of they-axis. Also, as shown above, as an
equidistant curveb “bulges” to the right (since it is to the right oft insidePRQR′) — that is it is turning
to the left as we traverse it from bottom to top. Thus,b’s associated hyperbolic line (the orthogonal circular
arc in the Poincaré model with the same endpoints)ℓ lies to the left of it in Figure 4, and henceℓ intersects
PR as claimed.

Finally, the pointsL,M , andN are determined as follows:L is the intersection ofℓ andPQ, M is the
intersection ofℓ andPR, andN is the foot of the perpendicular fromR to ℓ.

For the case ofp > q, we apply transformations to reduce that case to thep < q case (by relabeling).
First hyperbolically slide the kite tessellation shown in Figure 4 to the left along thex-axis, putting the
transformedQ at the origin. Then reflect across they-axis to obtain the configuration of Figure 4 with
P andQ interchanged (and the roles ofp andq will be interchanged too). As in the previous argument,b
intersects the segment betweenR and the the transformedQ at the origin at the pointM . Thus the following
derivation also applies to the casep > q if we interchangeP andQ, andp andq in the calculations.

Figure 3: The Circle Limit III pattern with its kite
tessellation superimposed.

P Q

R

R′

Q′

N
M

L

m

ℓ b

ω

Figure 4: The diagram for the hyperbolic trigonom-
etry calculation ofω.

Our goal is to compute the angle of intersectionω betweenb and the bounding circle. By a well-known
formula [7, page 402],ω is given by:

cos(ω) = tanh(RN)

SinceRNM is a right triangle, by one of the formulas for hyperbolic right triangles [7, page 403],tanh(RN)
is related totanh(RM) by: tanh(RN) = cos(6 NRM) tanh(RM). But 6 NRM = π

2
−

π
2r

since the
equidistant curve bisects6 PRQ = π

r
(in the Euclidean sense by construction and thus in the hyperbolic
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sense by conformality of the Poincaré model). Thuscos(6 NRM) = cos(π
2
−

π
2r

) = sin( π
2r

) and

tanh(RN) = sin(
π

2r
) tanh(RM) (1)

so that our task is reduced to calculatingtanh(RM).
In order to calculatetanh(RM), we note that as hyperbolic distancesRP = RM +MP , so eliminating

MP from this equation will relateRM to RP , which we can find. By the subtraction formula forcosh, we
havecosh(MP ) = cosh(RP − RM) = cosh(RP ) cosh(RM) − sinh(RP ) sinh(RM). Dividing through
by cosh(RM) gives:

cosh(MP )
cosh(RM)

= cosh(RP ) − sinh(RP ) tanh(RM) (2)

Also, another formula (Formula (11), page 403 of [7]) for hyperbolic right triangles applied toPML and
RMN gives:

cosh(MP ) = cot(6 PML) cot(π
p
) and

cosh(RM) = cot(6 RMN) cot(π
2
−

π
2r

)

Now as opposite angles,6 PML = 6 RMN , so dividing the first equation by the second gives:

cosh(MP )
cosh(RM)

= cot(
π

p
) cot(

π

2r
) (3)

Equating the right sides of (2) and (3) gives:cosh(RP ) − sinh(RP ) tanh(RM) = cot(π
p
) cot( π

2r
), which

can be solved fortanh(RM) in terms ofRP :

tanh(RM) =
cosh(RP ) − cot(π

p
) cot( π

2r
)

sinh(RP )
(4)

Thus we have reduced the problem to findingcosh(RP ) andsinh(RP ). One of the hyperbolic laws of
cosines [7, page 406] applied toQPR gives: cosh(RP ) = (cos(π

p
) cos(π

r
) + cos(π

q
))/ sin(π

p
) sin(π

r
). We

can calculatesinh(RP ) from this by the formulasinh2 = cosh2
−1. Substituting these values ofcosh(RP )

andsinh(RP ) into equation (4), and inserting that result into equation (1) gives the final result:

cos(ω) =
sin( π

2r
) (cos(π

q
) − cos(π

p
))√

cos(π
p
)2 + cos(π

q
)2 + cos(π

r
)2 + 2cos(π

p
) cos(π

q
) cos(π

r
) − 1

which is antisymmetric inp andq, as we would expect. For unrestrictedp andq we should replace the factor
(cos(π

q
) − cos(π

p
)) by its absolute value.

Letting q = r = 3 and doing some algebraic manipulation yields the same formula given in [5] for that
special case:

cos(ω) =
1
2

√
1 −

3
4 cos2( π

2p
)

This expression further reduces to Coxeter’s expression for theCircle Limit III case whenp = 4.
Some algebraic manipulation also yields a formula forcot(ω):

cot(ω) =
tan( π

2r
)(cos(π

q
) − cos(π

p
))√

(cos(π
p
) + cos(π

q
))2 + 2cos(π

r
) − 2

Again, we should replace the factor(cos(π
q
) − cos(π

p
)) by its absolute value ifp > q.
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4. Conclusions and Future Work

For any (p, q, r) pattern, we have given a formula for the angleω an equidistant “backbone” curve makes
with the bounding circle. This formula agrees with previously obtained results by Coxeter in theCircle
Limit III , (4,3,3) case, and by Dunham in the casep = r = 3.

However, there is still work to be done. In order to generate new patterns in this family of patterns,
it would also be useful to be able to transform one (p, q, r) pattern to another one with different values of
p, q, andr. A seemingly difficult problem is to automate the process of coloring a (p, q, r) pattern so that it
has the same color along any line of fish and adheres to the map-coloring principle that adjacent fish have
different colors. Currently we determine colorings “by hand”, and although it may be possible to program
symmetric colorings of any repeating pattern, the requirement that fish along a backbone line be the same
color adds an extra degree of difficulty to coloring (p, q, r) patterns.
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