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Abstract
Site swap is a mathematical notation used by jugglers to communicate, create and study complex juggling patterns.
Determining the number of possible site swap juggling patterns with respect to certain limiting parameters such as
number of balls etc., is a problem that has been much studied and solved by many mathematicians. However, when
the patterns have a throw height restriction (ceiling) the problem becomes difficult and is in general still open. In
this article we derive some formulae for computing the number of possible juggling patterns with respect to certain
ceiling types.

1 Introduction

Other than the fact that both mathematics and juggling have been with us for millenia, there seems to be little
else connecting these two disciplines. Both have managed to develop in some form or another in almost all of
the world’s ancient cultures with hardly any interaction or overlap between these two groups. One exception
would be Abu Sahl, who juggled glass bottles on the streets of 10th century Baghdad before becoming a well
known mathematician. It wasn’t until the later part of the 20th century that students of mathematics would
have the opportunity to learn and practice the art of juggling. This opportunity came as juggling increased
in popularity as a hobby and spread through the student societies of North American and later European
universities. After some time it was noticed that many of those who attended the weekly juggling workshops
where students of mathematics or physics. The correlation is not easily explained, but it seems that the
type of people that enjoy juggling also enjoy mathematics. As enjoyment leads to practice and practice
leads to excellence, there are many examples of mathematicians with exceptional juggling ability. Claude
Shannon and Ron Graham are two well known juggling mathematicians and both have written papers on the
mathematics of juggling [3], [1].

2 Site Swap Juggling

Preliminaries
Site swap juggling notation is a concept that allows representation of idealised juggling patterns by a string
of integers. The idea was developed independently by a number of people in the mid 1980s. We start by
making a number of assumptions about the juggling patterns we wish to consider.

• The types of objects being juggled are not specified and for convenience we call them balls. The balls
are fixed in number for any given pattern and each hand can hold, throw or catch only one at a time.

• The juggling pattern is periodic with period n so an action taken at time t = a is taken again at t = a+n.

• Any number of hands can be used to juggle any pattern. If more than one hand is used then every hand
throws with the same constant rhythm and in a strict ordering. Once a hand has made a throw then
every other hand takes turns throwing at fixed length time intervals before this first hand throws again.
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• The paths of the hands and the balls are not considered, only the amount of time it takes for a thrown
ball to be in a position that it can be thrown again.

We let jn
b denote a site swap juggling pattern with b balls and period n. The pattern can be written as an

n-tuple with a command hi at coordinate i instructing the juggler how high to throw a ball at time t = i.

jn
b = (h0,h1,h2, ...,hn−1)

Each hi specifies the amount of time it will take for the ball thrown at t = i to travel through the air, be caught
and be ready to be thrown again. The unit of time used is the interval between any two throws. This means
that a ball thrown at time t = i with height hi will be caught at time i+hi and can then be thrown again. The
assumption that every hand catches only one ball at a time means that,

i+hi 6= j +h j mod n.

Less obviously, we have another restriction on the hi, namely

n−1

∑
i=0

hi = bn.

A full proof of the fact that jn
b is a site swap juggling pattern if and only if both of the above conditions are

satisfied is given in [1].

Constructing a Site Swap Pattern
Once presented with an ordered set of n integers it is easy to determine whether or not it represents a juggling
pattern by checking whether it obeys both conditions above. If it is a legitimate pattern, we can also determine
how many balls are required to juggle it by taking the average of the throw heights (a rearrangement of the
second condition). However, it is also possible to directly construct an n-tuple that will obey both conditions
by decomposing jn

b into three parts. That is, we let

jn
b = Pn−Qn +nBn,

where Pn = (p0, p1, ..., pn−1), Qn = (0,1, ...,n−1) and Bn = (b0,b1, ...,bn−1). Each pi is a distinct element
of the integers {0,1, ...,n−1}, each bi is a non negative integer and ∑

n−1
i=0 bi = b. It can be easily verified (as

in [1]) that any vector constructed this way will be a site swap pattern and furthermore that every site swap
pattern can be decomposed in this way.

We will now demonstrate the simplicity of this construction with an example. Let n = b = 4, so we are
constructing a 4 ball pattern with period 4. For P4 choose (1,2,3,0) and for B4 choose (1,1,1,1). Therefore,

j4
4 = (1,2,3,0)− (0,1,2,3)+4(1,1,1,1) = (5,5,5,1).

This is just one of the many new patterns discovered and now performed by jugglers since the introduction
of site swap notation. Note that we can make any choice we wish for Pn, but Bn must have bi ≥ 1 in any
position where Pn−Qn is negative, otherwise the juggling pattern would contain a negative throw height. As
height is a measurement of time, a negative height would mean that the ball was thrown backwards through
time. This should be avoided. The requirement that bi be at least one in the positions where there are negative
numbers in Pn−Qn is a crucial part of the counting argument in the next section. It is clear that bi need only
be at least one in order to prevent negative numbers occurring in the pattern as every entry in Bn is multiplied
by n while the lowest possible number in Pn−Qn is −(n−1).

Now that jugglers can construct all the possible site swap patterns for any period or number of balls they
wish, the natural question is, when will this end? That is, how many site swap patterns are there?
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3 Counting Patterns

It’s not too difficult to see that if we allow the period of the juggling patterns to extend to infinity then the
number of possible site swap pattern will be infinite. So when we count the number of possible site swaps
we put limitations on the parameters of the patterns. Let J(n,b) denote the number of patterns of period n
and b balls. In [1] it is shown that J(n,b) = (b + 1)n− bn. This result has been reproven in many different
ways since its publication with significantly shorter proofs. In this section we will return to the method used
in the original proof in order to derive a formula for the number of possible patterns limited by a maximum
throw height as well as a specified number of balls and fixed period.

The motivation for this is that when the above formula is applied to practical juggling the count includes
patterns that have unrealistically high throws. For example, if we count the number of 5 ball patterns with
period 4 (both unremarkable numbers in this context) the formula gives 671 possible patterns. This count
however includes patterns such as (20,0,0,0). This coresponds to a ball spending approximately 4 seconds
in flight, which would require a throw of about 20 meters. Even the world’s best jugglers would find it
difficult to throw a ball 5 meters in such a way that it can be comfortably caught and hence used in a pattern.
A ceiling of 5 meters would roughly translate to a throw height of 10 or 11 for the hi. Let J(n,b,c) be the
number of jn

b with each hi ≤ c. Ideally we would like to be able to count this for any choice of c. In this
section we obtain a formula J(n,b,c) whenever c is of the form an−1 for any integer a. In the next section
we will consider the number of patterns with c ≤ n−1 and discuss its relation to the rook(s,n) problem of
Vardi [5]. First we recall some existing results from combinatorics.

Eulerian numbers
Let P(n) denote the set of n-tuples Pn as defined in section 2. Then the Eulerian number, denoted E(n,k),
is the number of all possible Pn ∈ P(n) such that pi < i for exactly k values of i. This is not the original
definition but it is shown in [1] to be equivalent. These numbers obey the recursive relation,

E(n,k) = (k +1)E(n−1,k)+(n− k)E(n−1,k−1).

Using this we can obtain the following array for small values of n. The number E(n,k) is in the kth position
on the nth row.

1

1 1

1 4 1

1 11 11 1

1 26 66 26 1

1 57 302 302 57 1

We also have the identities
n−1

∑
k=0

E(n,k) = n!

and
E(n,k) = E(n,n− k−1),

as well as the explicit representation

E(n,k) =
n

∑
i=0

(−1)i
(

n
i

)
[(k− i+1)n− (k− i)n].
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Number of ways to sum to an non negative integer
Let B(n,b) denote the number of n-tuples of non negative integers with entries that sum to b. That is, the
number of possible Bn as defined in section 2. We have,

B(n,b) =
(

n+b−1
n−1

)
.

This result is well known and a simple proof can be found in [2]. If we wish to determine the number of
Bn with each bi ≤ a (denoted B(n,b,a)), then applying a standard inclusion-exclusion argument to the above
identity yields,

B(n,b,a) =
n

∑
i=0

(−1)i
(

n
i

)(
n+b−1− i(a+1)

n−1

)
.

Worpitzky’s identity
The following equation, involving the Eulerian numbers, first appeared in [6] in 1881,

xn =
n−1

∑
k=0

E(n,k)
(

x+ k
n

)
.

This can be verified by applying an inductive argument on x and using the recursive formula for E(n,k).

Theorem 1 The number of period n site swap patterns with b balls and ceiling of an− 1 for any positive
integer a is given by

J(n,b,an−1) =
n

∑
i=0

(−1)i
(

n
i

)
[(b− ia+1)n− (b− ia)n].

Proof:
As every juggling pattern jn

b can be decomposed as Pn−Qn +nBn, we can compute the number of possible
jn
b by taking the product of the number Pn and the number of Bn. However, our choice of Bn is restricted by

the number of negative numbers that appear in Pn−Qn, i.e., by our choice of Pn. If we could allow negative
hi in jn

b and hence time travelling balls, then the number of patterns with each hi ≤ an−1 is n!B(n,b,a−1).
This comes from n! choices for Pn times the B(n,b,a−1) choices for the Bn with each bi ≤ a−1 which only
allows jn

b to be as high as an− 1. If we wish to recount this without allowing negative hi, then we have to
have bi ≥ 1 in every position in Bn where Pn−Qn is negative. If Pn−Qn has k negative entries and we insist
that in each of these k positions bi ≥ 1, then the number of choices for Bn will only be B(n,b−k,a−1). The
number of Pn−Qn with k negative entries is the same as the number of pi with pi < i, i.e., it is the Eulerian
number E(n,k). Therefore summing over all Eulerian numbers for k = 0 to n−1 and multiplying each one
by the consequent number of choices for Bn gives us all patterns without negative hi. Therefore we have

J(n,b,an−1) =
n−1

∑
k=0

E(n,k)B(n,b− k,a−1).

This implies

J(n,b,an−1) =
n−1

∑
k=0

E(n,k)
n

∑
i=0

(−1)i
(

n
i

)(
b+n−1− ia− k

n−1

)

=
n

∑
i=0

(−1)i
(

n
i

) n−1

∑
k=0

E(n,k)
(

b+n−1− ia− k
n−1

)
.
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Note that as E(n,k) = E(n,n− k− 1), we can replace k with n− k− 1 in the binomial coefficient while
leaving it unchanged in E(n,k) to obtain

J(n,b,an−1) =
n

∑
i=0

(−1)i
(

n
i

) n−1

∑
k=0

E(n,k)
(

b− ia+ k
n−1

)
.

Now we apply the relation (
x

n−1

)
=

(
x+1

n

)
−

(
x
n

)
and obtain

J(n,b,an−1) =
n

∑
i=0

(−1)i
(

n
i

) n−1

∑
k=0

E(n,k)[
(

b− ia+ k +1
n

)
−

(
b− ia+ k

n

)
].

Finally we apply Worpitzky’s identity to get

J(n,b,an−1) =
n

∑
i=0

(−1)i
(

n
i

)
[(b− ia+1)n− (b− ia)n]

and the proof is complete. tu

4 Small ceilings and Vardi’s rook problem

From now on we will only consider ceilings that are less than the period. We shall refer to such ceilings
as small, although they are only small relative to n (which is only bounded by the jugglers memory and the
audience’s patience). As bounding height also bounds the maximum number of balls that can be juggled
(b ≤ c), we will also be considering J(n,∗,c), where the ‘∗’ indicates that we are not fixing the number of
balls in the count , i.e., J(n,∗,c) = ∑

c
b=0 J(n,b,c).

From Theorem 1 we have J(n,b,n− 1) = ∑
n
i=0(−1)i

(n
i

)
[(b− i + 1)n − (b− i)n]. This is the explicit

formula for the Eulerian number from section 2. This means

J(n,b,n−1) = E(n,b)

and hence

J(n,∗,n−1) =
n−1

∑
b=0

J(n,b,n−1) =
n−1

∑
b=0

E(n,k) = n!.

There is another way we could have arrived at these solutions. If we construct a juggling pattern with the
decomposition method from section 2 and insist that each hi ≤ n−1, then the only places in Bn we can have a
nonzero entry are the positions where Pn−Qn are negative. This means there will always be only one choice
for Bn as we need bi = 1 whenever pi < i and the number of choices for Pn will be E(n,b). Therefore E(n,b)
will be the number of possible patterns with b balls. We find it interesting that by counting the number of
possible juggling patterns in two different ways we can derive the explicit formula for E(n,k).

Next we will consider ceilings that are smaller than n− 1. When we count J(n,∗,n− 1), there is only
one choice for Bn but we can use any Pn as we have not specified the number of balls. If c < n−1, there will
again be only one choice for Bn but the choices on Pn will be limited also. To count the number J(n,∗,c)
(whenever c ≤ n− 1) we need to find the number of Pn such that pi − i ≤ c mod n for all pi in Pn. An
equivalent problem has already been studied by Vardi in [5]. It is a particular form of the rook placement
with restrictions problem. In rook placement problems one has to place n rooks on an n×n chessboard such
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that no rook can capture any other (i.e., one on every row and column). The task is to determine the number
of possible arrangements when some other restrictions are introduced. When there are no extra restrictions
the number of arrangements in n!.
We state (a version) of Vardi’s problem:
Consider an n×n chessboard with the restriction that, for some fixed s and any positive t ≤ s , a rook may
not be put in column t + i mod n when on row i, where the rows are numbered 0,1, . . . ,n− 1. In [5] Vardi
uses rook(s,n) to denote the number of possible arrangements. He notes that rook(1,n) is the number of
derangements on n symbols and rook(2,n) is the solution to the married couples problem (see[4]). This is
equivalent to counting the number of possible arrangements with no rooks on any s specified and adjacent
diagonals. By specifying the appropriate diagonals we can say that, this in turn is equivalent to the number
of Pn with each pi− i≤ n− s−1 mod n. This implies that for c≤ n−1, we have

J(n,∗,c) = rook(n− c−1,n).

Using the fact that both rook(1,n) and rook(2,n) are known [4], we can obtain two more formulae for
J(n,∗,c),

J(n,∗,n−2) =
n

∑
k=0

(−1)k
(

n
k

)
(n− k)!

and

J(n,∗,n−3) =
n

∑
k=0

(−1)k 2n
2n− k

(
2n− k

k

)
(n− k)!.

5 Closing Remarks

In this article we have derived a number of expressions for the number of juggling patterns when a throw
height limit is assumed. In particular, for juggling patterns of period n we now have formulae for the number
of patterns where the ceiling is an− 1, n− 2 or n− 3. In the last two formulae we have not specified
the number of balls and have instead summed over all possible patterns with all possible number of balls
(including the b = 0 pattern, which is neither difficult nor entertaining). This was done for the convenience
of the mathematics and we would like to derive these formulae for a specified number of balls. In the n−2
case, this would be akin to partitioning the derangement numbers in the same way that the Eulerian numbers
partition the factorials. It is not too hard to derive the three variable recursive relations for this problem,
however an explicit solution seems difficult.
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