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Abstract

This paper considers groups of musical “contextual” transformations, the most famous of which is a group of bi-
jections between minor and major triads described by the music theorist Hugo Riemann (1880). Mathematically,
contextual transformations act on chords or melodies and commute with transposition (shifting by the same number
of pitches in the same direction). This is important because most people naturally identify two melodies or chord
progressions as “the same” if one is a transposition of the other. Music theorists have studied contextual transposi-
tion and inversion groups extensively; in particular, Lewin (1987), Kochavi (1998), and Fiore and Satyendra (2005)
used discrete group theory, while Clough (1998) and Gollin (1998) considered symmetries of discrete geometric
spaces. The action of contextual transpositions and inversions @ortiauousgeometric “voice-leading spaces”

of Callender, Quinn, and Tymoczko (2008) reveals subtleties that do not arise in the traditional discrete approach.
| propose two ways of understanding contextual transpositions and inversions, one employing a “bundle” construc-
tion and the other representing contextual transformations as a family of linear transformations. The first involves
topological group theory, the second dynamics. | discuss the advantages and drawbacks of each method.
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Figure 1: “ Somewhere over the Rainbow” in the keys of C major and D major.
1. Introduction

Consider two versions of “Somewhere Over the Rainbow.” The firsioetsegins with a C note and a C
major chord. (The letter names above the staff indicate chords that might be played on a guitar or piano
to accompany the singer.) The second version has treesposed-shifted up in pitch—so that it starts

on a D note with a D major chord. Our brains naturally identify these two realizations of the melody as
“the same.” In fact, unless the two versions are played in succession, most people—including many highly
trained musicians—cannot distinguish between them.

Because many chordal relationships are invariant under transposition, Western musicians have tradition-
ally labeled chords with Roman numerals indicating their relationship to a tonal center. Each numeral
represents the scale degree of a chord’s root note, with a capital letter for a major triad and a lowercase
letter for a minor triad. For example, the C major chord is labéladthe key of C major. Although one
rarely finds two different musical pieces with identical melodies, chord progressions that are the same up
to transposition are common. For example, “I Got Rhythm” and “Blue Moon” start with the progression
I-vi-ii-V-1. Figure 2 shows a voicing of this progression in two different keys (C major and D major).

The examples considered above share another important feature: they involve only two types of chords,
major and minor triads. These are closely related. A major triad is a minor third stacked on top of a major
third, while a minor triad is a major third stacked on top of a minor third. Music theorists say that major and
minor triads constitute a “set class.”

pitch is frequency measured on a logarithmic scale. A piano keyboard is a linear representation of pitch; the smallest interval
between two keys on the piano is calledeanitoneand equals one unit of pitch.
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Figure 2: Thel-vi-ii-V-I progression; the relative, parallel, and leittonwechsel progressions.
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Figure 3: Transposition, inversion, schritt, and the “relative” wechsel acting on major and minor triads in
equal temperament.

There are several relevant bijections between major and minor triads. Inversions, depicted in Figure 3
(top), reflect every chord around some fixed “origin” (here?)Cthus, the inversion of a major triad is a
minor triad and vice versa. Inversion does not commute with transposition. Most people would not identify
the inversion C major—F minor as “the same progression” as the inversion D majoiré&it

In contrast, the distance between (C4, E4, G4) and its inversion in G4 (A4, C5, E5)—also known as its
relative minor—is the same as the distance between (D5, Ft5, A5) and its inversion in A5, or relative minor.
Contextual inversions, calledechsels, capture this similarity: the axis of inversion “follows” a chord as it
is transposed. The composition of two wechsels is a contextual transpositsuhyritt, that moves a chord
and its inverted form by the same amount in opposite directions. Mathematically, schritts and wechsels
commute with transposition and inversion (though not with each other).

The neo-Riemannian transformationférst described by the music theorists Arthur von Oettingen [10]
and Hugo Riemann [11], form a group of bijections between the set of major triads and the set of minor triads
that commute with transposition and inversion. The wechsels “relative,” “parallel,” and “leittonwechsel”
generate this group (Figure 2, right). Such progressions are ubiquitous, from early music to rock. The
I-vi-ii-V progression contains two neo-Riemannian progressieasi(&ndii<V).

Neo-Riemannian transformations belong to a larger class of so-catlet&xtual transformatiors
“contextual” because their action depends on the objects they act on. Music theorists, most notably Lewin [8],
have extended the definition of contextual transformations to apply to other chords and even ordered se-
guences of pitches. They have not restricted their investigations to chords common in tonal music; contex-
tual transformations appear in both tonal and atonal music.

2The “5” indicates the octave: C4 is middle C and C5 is an octave above middle C.
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2. Geometrical Music Theory

This paper interprets contextual transpositions and inversions as actions on the geometric spaces described
by Callender, Quinn, and Tymoczko [12, 1] (henceforth, CQT). Although schritts and wechsels are staples
of traditional musical set theory, they have not yet been incorporated into geometrical music theory. In the
following pages, we consider how schritts and wechsels can be realized as group actions on CQT spaces.

Formally, pitch is frequency measured on a logarithmic scale. There are twelve units of pitch (semitones)
to an octave. Pitches lie on a continuum; integer pitches form twelve-tone equal temperament (12-tet). An
ordered multiset of pitches corresponds to a point-timensional space (B.

Musicians commonly recognize several groups acting on ordered pitch space: the permutation group (P),
whose elements reorder multisets of pitches; the group of octave €iftsvhich move an individual pitch
in a multiset up or down by some number of octaves; the transposition group (T), consisting of translations
shifting all the pitches in a multiset up or down by a fixed amount; and a two-element inversion group (I),
or reflection in the origin.

These groups induce equivalence relation®Rarby identifying points in the same orbit. Some equiv-
alence classes have familiar names. The equivalence class of a single pitch under octave shift is called its
pitch class. Pitch classes are indicated by letter names (“C'Hhéyd is an unordered multiset of pitch
classes. For example, any combination of C, E, and G pitch classes forms a “C major chord.” The set of
major chords is an example ofchord type(also called daranspositional set clajs—a set of chords related
by transposition. Finally, aet classs an equivalence class of chords related by transposition and inversion.
“Minor and major triads” form a set class.

The group®, P, T, andI are all generated by affine linear transformation®ar{for example, addition
of (12,0,...,0) is an element 00). Identifying (“gluing together”) orbits of these groups produces a family
of singular quotient spaces calledbifolds. For example, pitch classes inhabit the ciiRjg®O = R/127Z;
ordered multisets of pitch classes inhabit the tdkiigO = T". Chords lie inR™/OP and chord types in
R™/OPT. Set classes are orbits und@PT1I equivalence. Cardinality equivalence (C), which identifies
points whose coordinates form the same set, ignoring multiplicities, is an additional equivalence relation,
though not one arising from a group acti®®@QT spacesare quotients ofi-dimensional ordered pitch space
by any combination of the fiv® PTIC equivalence relations. (See Table S2 in [1] for a full description of
CQT spaces).

A directed line segment in-dimensional ordered pitch space corresponds to a mapping from one musical
object to another. If we think of each coordinate as representing an instrumental “voice,” a directed line
segment indicates how voices move in time; any musical score can be represented as a succession of directed
line segments iR™ or any of its quotient spaces. Musicians call these mappmgs leadings. Voice
leadings may inherit “length” from some distance function in ordered pitch space (see [5]).

3. A Bundle Representation

A chordv is a multiset of points on the pitch class circle. gtrepresent transposition (rotation) up by

x pitches and represent inversion (reflection) in the axis passing through the origin (any other inversion
is a composition off and a transposition). Transposition and inversion anticommuyté &'17_,). The

T1 group is a topological group isomorphic to the orthogonal grogp), the isometries oR? that fix the

origin. Topologically,0(2) is two disconnected circle§O(2) is the component containing the identity.

(In the discrete group theory normally used by music theorists, the group of transpositions and inversions is
isomorphic to the dihedral groups,.)

Traditional music theory (see Forte [4]) classifies chords based on their memberships in set classes—

equivalence classes of chords related by transposition and inversion. Each set class is an orbit under the
action of theTT group. In most cases, tHEI group acts transitively on set classes, meaning that the
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identity is the only group element that fixes elements of the set class. Excepticunsat “singular” chords
possessing additional rotational or inversional symmetries. For example, the singulaf 2&rds fixed
by Te, Tyl, andT_QI.

The orbit of any chord without inversional symmetry is topologically identical tofiegroup. That
is, it consists of two disconnected circles, arbitrarily labgledandV —; every point on one of the circles
represents some member of the set class. Figure 4, left, depicts the action of transposition and inversion on
this orbit. (Note that this is not a picture of the pitch class circle. Points, rather than multisets of points,
represent chords.) The orbit of a chord with inversional symmetry consists of only one circle. If a chord has
nontrivial rotational but not inversional symmetry, its set class is two circles, but “smaller” in that they are
fixed by transposition of2/k pitches for some integer > 1.

Figure4: T, I, S, andW acting on a nonsingular set class.

We define a schrit$,. to be rotation o/ up byx pitches and’~ down byz pitches and a wechsBl to
be a bijection between the two circles that commutes with transposition. Figure 4, right, depicts the action
of schritts and wechsels. Like transpositions and inversions, schritts and wechsels anticommute—that is,
S W = WS_,. If we think of elements of th&'I group as acting on the left, thet), and¥ are precisely
theright actions of transposition and inversion (physicists call this construction a torsor—see Lavelle [7]).
We refer to this group as tH&W group.

Hook [6] showed that th& W group acting on triads is the dual to tHd group in the sense that each
group is the centralizer of the other; Fiore and Satyendra [2] extended this result to ordered pitch class
sets ink-tet. They described a schritt/wechsel group acting on the rational poifits @&s thegeneralized
contextual group.

With the exception of transposition, defining these transformations require some (perhaps arbitrary)
choices. Schritts require the designation of one circle as “positive” and the other as “negative,” inversions
require the choice of a preferred axis, and wechsels require an alignméint ahd V' ~. It suffices to
define one inversion and one wechsel for every orbit, since all the others are compositions of inversion and
transposition or wechsel and schritt. There exists a “reference goiftt’ which W (b) = I(b); this base
point determines the action & and/ on the entire orbit. The reference point is unique up to equivalence
modulo 6.

Our goal is to define schritts and wechsels on continuous set class space. We first consider the product
spaceR”/OPTI x O(2). This space has two connected components, each isomorpRit/@©@PTI x
SO(2), and natural left and righ®(2) actionsh(o, g) = (o, hg) and(o, g)h = (o, gh), respectively, for
a set class ang, 4 in O(2). The product space isgincipal homogeneous spaéer the action ofO(2);
each copy of)(2) is afiber.

Transposition is clearly continuous. The challenge is to make the choices required to define schritts,
wechsels, and inversions as continuous maps on the product spaeetiénis a continuous map from set
class spac®”/OPTItoR"/OPTIx O(2) such that each set classs mapped to some pdis, f), where
f is an element of the fiber associatedrtoThe positive component—the one edéh inhabits—contains
the image ofR”/OPTI. The canonical andW are inherited fromO(2).
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Because of the existence of singular set classed'TrendSW groups do not act simply transitively on
any product space. In order to model the transposition/inversion group, we form a singular Bumdile
the fiber at each point representing a group of transpositions and inversions that act transitively on that set
class. The fiber associated to an inversionally symmetric set class has only one component; for set classes
dividing the octave evenly intp parts, the fiber is one or two copiesi®f (12/p)Z rather tharR /12Z. This
fiber bundle is similar in structure ®"/OP.

Transpositions act continuously, even on a singular bundle. However, a sghstibuld move points on
V+ andV ™ by x pitches in opposite directions. One cannot define a sc$yithat acts continuously on
B, as there exist inversionally symmetric set classes arbitrarily close to pairs of dirtlend V'~ along
which S, acts in opposite directions. However, there amgionsof set class space within which one can
define continuous schritts.

Fiore and Satyendra [2] described a structure on whichHltheandSW groups act simply transitively
by essentially allowing every set class—even those with inversional symmetry—tavi@ganonical rep-
resentatives, one designated an inversion. Their construction may be realized by a section of the product
space rather than a section of the singular buitile

4. Linear Transformationson Ordered Pitch Class Space

Transposition and inversion are affine linear transformations acting on ordered pitch clas¥'sjpace-
dered pitch spacR”. Is there a natural representation of contextual transpositions and inversions as affine
linear transformations?

Following Lewin [8], we refer to an ordered multiset of pitches or pitch classepifistBsegmenr pitch
class segment. Suppose the affine linear transformationadimensional pitch class spage— Mz + b
commutes with transposition, wheié is an x n matrix andb is in R™. Let1 = (1,1,...,1). Then for
z € R™ andc a real number,

M(z+cl)+b=Mz+b+cl,

so M fixes1. Sinceb does not depend on (b determines a voice leading), we restrict our attentions to
linear transformationg — Mz. All transformations of this form also commute with inversion. It seems
reasonable that no nonzero subspacEobe mapped to zero, so we assume fhais invertible. Moreover,

M should preserve octave equivalence; that is,

M(z+(0,...,0,12,0,...,0)) =z (mod 12),

which implies that the entries @ are integers and hence the determinantfois +1. Therefore M is an
element of the general linear grotf.(n, Z). (Transformations that do not preserve octave equivalence are
rarely useful in music theory.)

Let G be the group of invertible linear transformations on the tdftighat commute with transposition
and inversion:G = {M € GL(n,Z) : M1 = 1}. We will investigate the structure @. In particular,
we seek a workable definition of the subgroupg/afonsisting of transformations that preserve chord type
or set class—these will be candidates for the contextual transposition group and the contextual transposi-
tion/inversion group, respectively.

At this point, it is convenient to choose a basis 1t so thatl is a basis vector. Using the basis
{1,(-1,1,0,...,0),(-1,0,1,0,...,0),...,(—1,0,...,0,1)}, every point(zo, 21, . . . , 2,—1) Can be writ-
ten in the form(xq | 21, 22, ..., z,—1) Wherexg = 2, x1 = 21 — 20, T2 = 22 — 2o, and so on. (Think of
x( as the first note in the segment, and the othér as intervals measured from the first note; “Twinkle,
Twinkle” is represented0|0,7,7,9,9,7) in C major and(2|0,7,7,9,9,7) in D major.) With this basis,
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every element off can be written uniquely in the form

1 | a; o Qp_i
0
: A
0
where(ay,...,a,_1) = aisinZ" ! andAisin GL(n — 1,7Z). We represent elements compactly as pairs

(a, A). Multiplication in G follows the rule
(a,A) x (b, B) = (aB + b, AB).

The set{(a,id) : a € Z"~'}, whereid represents ther — 1) x (n— 1) identity matrix, is a normal subgroup
of G that is isomorphic t&"~!. The following sequence is exact:

0— zn ! — G — GL(n—1,Z) — 0.

We see thag is isomorphic to the semidirect produ&t—! x GL(n — 1,Z). LetCT represent the normal
subgroup{(a, id) : a € Z""'}.

Both C'T" andG L(n, Z) appear in musical contexts. Contextual transpositions are transformations that
transpose a pitch class segment and its inversion in opposite directions by equal amounts. Thus—if one
agrees with the assumptions made in this section of the paperdis@Itontextual transposition group.

In tuning theory, two tunings defined bygenerating intervals are considered identical if the intervals of
one can be mapped to the intervals of the other (modulo octave equivalence) by a linear transformation in
GL(n,Z) [9].

We would also like to find a subgroup of that is a plausible candidate for the group of contextual
transpositions and inversions. The elemg@nt-id) generates a group of order two; it represents the wechsel
that inverts the intervals in a pitch segment while fixing its first fotée form the exact sequence

0—Z" ' %2y — G — PGL(n—1,Z) — 0.
(PGL is the projective linear grou@'L(n — 1,7)/{£1}.) LetCI denoteZ" ! x Zo = {(a, +id)} C G.

The groupCT of contextual inversions and transpositions is normaJ iand contain€’7T" as a normal
subgroupg is the semidirect product &7 andPGL(n — 1,7Z). Elements ofC'I act on point§z | x) :=
(xo|z1,...,2xn—1) in the pitch class torus by

(a,%id)(zo | x) = (zo + a- x| £ x).
(In other words, the amount by which the segment or its inversion is transposed is a linear combination of

its intervals.)

Although C'I acts simply transitively on the torus as a whdl¥, does not act simply transitively on all
pointsin T"—in fact, every pitch class segment with rational intervals is fixed by some nontrivial subgroup
of CI. For example, all 12-tet segments are fixed b3a, id). Taking the quotient of ' by 127"~ x Z,
produces the “12-tet contextual transposition/inversion graijg™ x Z,.4

When we take voice leadings into account, &€ andCI groups are anything but well behaved. Not
only are they not isometries df”, but they are actually “chaotic”: For any pitch class segneemind

SAnother subgroup of that produces a similar structure is generateddtgograde, or reversing the order of a pitch class
segment. In some situations it will be more convenient to use this group, or perhaps to use both retrograde and contextual inversion.
“Hook [6] studied an isomorphic group fer = 3 extensively, in the context of transformations of pairs of 12-tet major and
minor triads (uniform triadic transformatiohsThere exists an analogous group in any dimension that acts transitively-en )-
element linearly independent sets of pitch class segments.
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any nontrivial contextual transpositiof, there exists a pitch class segménarbitrarily close toa that is

mapped arbitrarily far frona by repeated application of to both segments. Voice leadings (line segments)

are badly distorted by these groups. This is rather discouraging, as one of the most attractive features of
CQT spaces is that they possess a natural notion of “size.” Tymoczko [13] observes that music theorists
sometimes seem to assume that there is a notion ofirdiientin transformation groups—however, in

many reasonable musical situations it is essential to make this notion explicit.

5. Examples

David Lewin was particularly interested in contextual transpositions and inversions that preserve at least
one common tone. Examples from his work include the so-called RICH, TCH = RIFHCH, TLAST,
TFIRST, FLIPEND, and FLIPSTART transformations [8]. These are all element& ofls C'I generated

by common-tone preserving transpositions and inversions? The answer is yes. A set of generators is

((0,...,0),—1id), {(1,0,...,0),id), ((0,1,0,...,0),id), ((0,...,0,1),id)

(that is, the contextual inversion that fixes the first element of a pitch class segment, plus a linearly indepen-
dent set of contextual transpositions that preserve a common tone).

5.1. The PLR group. TheCI group acting oril® is generated by the linear transformatidig, =

((1,0), —id), Wiz = ((0,1), —id), andWas = ((1,1),—id) (note thatWW;; exchanges théth and jth
elements of the pitch class segment). It has the presentdfign W3, Was : W3, = Wi = W3, =
(W1aW13Wa3)? = 1), its elements can be represented by paths in a honeycomb lattice (its Cayley graph),
and it is isomorphic t&? x Zs.

This departs from musical tradition in several ways. The group does not act simply transitively
on the orbit of any pitch segment that can be embedded in equal temperament. Moreover, the size of an
orbit depends on the pitch class segment chosen: if a pitch class segment can be embledolee agual
temperament, then its orbit under the actionCtdf can have no more thak elements. So, for example,
the orbit of CT acting on(1, 5,9) can have no more than six elements, sificé, 9) can be embedded in 3-
tone equal temperament. In contrast, orbits of pitch class segments containing irrationally-related intervals
(e.g.the just-tempered major trigd, 12 log,(5/4), 121og,(3/2))) are infinite; in this case;'I acts simply
transitively. Although an infinite orbit is true to Oettingen and Riemann’s original conception of these
transformations, the usefulness of this group in the irrational case is considered and rejected by Lewin [8,
8.2.1].

The PLR group is the restriction of th€'I group to the orbit of a equally tempered major triad. Lét
be the orbit of(0, 4, 7) under theC'I group:

M = {i($,4,7) T e Zlg}.

The stabilizer of(0,4, 7) is the cyclic subgroup of order 1%((a,b),id) : 4a + 70 = 0 (mod 12)}
generated by((5,4),:d). The quotient ofCI by this group is theP LR group, which is isomorphic to
Z15 X Zo. The generators af'/ are the familiar neo-Riemannian transformationgs, W3, andWss act
asR, P, and[L respectively.

5.2. Generated sequences. Let A = ((1),id) on T2, Successive application of to an interval(0, g)

gives the sequence of “fifthg0, g), (9,29), (29,39),.... The mapg — ng (mod 12) is the chaotic
dynamical system depicted in Figure 5. One result of this fact is that you can’t simultaneously tune fifths
and octaves—a fact that has plagued musicians for centuries! The orbit of the equally tempered major
third has three points and the orbit of the equally tempered perfect fifth has twelve points; the orbit of any
irrational interval is dense in the octave.

®This construction also appears in [3]. Note that the order of a pitch segment is crucial. For eX@mygie,0,4) = (0,7,3),
which is not the relative minor 0, 4, 7).
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g = efmajor third

g = et pérfect fifth
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12 12
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Figure 5: The chaotic dynamical systegn— ng (mod 12)

6. Conclusion

This paper explores two mathematical models for contextual transposition and inversion groups acting on
CQT spaces. The process of adapting algebraic structures to continuous spaces points out differences that
are concealed by discrete set theory. My feeling is that the first is more consistent with the literature, as
contextual transpositions and inversions are generally described as actions on set classes. However, the
second representation does arise in music theory, both in the work of Lewin and in the context of tuning and
scale theory.

It is not clear whether either of the models discussed is the “right” way to think about contextual trans-
formations in CQT spaces. Music, not mathematics, should motivate that investigation.

Acknowledgements. | thank John Hall, Erik Van Erp, and Dmitri Tymoczko for their helpful comments.

References

[1] Clifton Callender, lan Quinn, and Dmitri Tymoczko. Generalized voice-leading sp&césnce, 320:346—-348, 2008.
[2] Thomas Fiore and Ramon Satyendra. Generalized contextual gidugs Theory Online, 11(3), 2005.

[3] Thomas M. Fiore. Music and mathematics, 2008. URL: http://www.math.uchicago.edu/ fiore/l/musictotal.pdf. Retrieved
January 3, 2008.

[4] Allen Forte. The Structure of Atonal Music. Yale University Press, New Haven, CT, 1973.

[5] Rachel W. Hall and Dmitri Tymoczko. Poverty and polyphony: A connection between economics and music. In Reza
Sarhangi and Carlo&gjuin, editorsBridges: Mathematical Connections in Art, Music, and Science, Donostia, Spain, 2007.

[6] Julian Hook.Uniform triadic transformationsPhD thesis, Indiana University, Bloomington, IN, 2002.

[7] Stephen Lavelle. Some formalizations in musical set theory, 2005. URL: http://www.maths.tcd.ie/ icecube/lewin.pdf. Re-
trieved January 11, 2008.

[8] David Lewin. Generalized Musical Intervals and Transformatiolvale University Press, New Haven, CT, 1987.

[9] Andrew Milne, Wiliam A. Sethares, and James Plamondon. _system,  2006. URL:
www.thummer.com/ThumTonel&ystem.pdf. Retrieved April 24, 2008.

[10] A.v. OettingenHarmoniesystem in Dualer Entwicklung. W.&SEr, Leipzig, 1866.

[11] Hugo RiemannsSkizze einer Neuen Methode der Harmonielehre. Breitkop&&iél, Leipzig, 1880.
[12] Dmitri Tymoczko. The geometry of musical chordcience, 313(5783):72—74, 2006.

[13] Dmitri Tymoczko. Generalizing musical intervals, 2008. Preprint.

186



