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Abstract

This paper considers groups of musical “contextual” transformations, the most famous of which is a group of bi-
jections between minor and major triads described by the music theorist Hugo Riemann (1880). Mathematically,
contextual transformations act on chords or melodies and commute with transposition (shifting by the same number
of pitches in the same direction). This is important because most people naturally identify two melodies or chord
progressions as “the same” if one is a transposition of the other. Music theorists have studied contextual transposi-
tion and inversion groups extensively; in particular, Lewin (1987), Kochavi (1998), and Fiore and Satyendra (2005)
used discrete group theory, while Clough (1998) and Gollin (1998) considered symmetries of discrete geometric
spaces. The action of contextual transpositions and inversions on thecontinuousgeometric “voice-leading spaces”
of Callender, Quinn, and Tymoczko (2008) reveals subtleties that do not arise in the traditional discrete approach.
I propose two ways of understanding contextual transpositions and inversions, one employing a “bundle” construc-
tion and the other representing contextual transformations as a family of linear transformations. The first involves
topological group theory, the second dynamics. I discuss the advantages and drawbacks of each method.
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Figure 1: “ Somewhere over the Rainbow” in the keys of C major and D major.

1. Introduction

Consider two versions of “Somewhere Over the Rainbow.” The first version begins with a C note and a C
major chord. (The letter names above the staff indicate chords that might be played on a guitar or piano
to accompany the singer.) The second version has beentransposed—shifted up in pitch1—so that it starts
on a D note with a D major chord. Our brains naturally identify these two realizations of the melody as
“the same.” In fact, unless the two versions are played in succession, most people—including many highly
trained musicians—cannot distinguish between them.

Because many chordal relationships are invariant under transposition, Western musicians have tradition-
ally labeled chords with Roman numerals indicating their relationship to a tonal center. Each numeral
represents the scale degree of a chord’s root note, with a capital letter for a major triad and a lowercase
letter for a minor triad. For example, the C major chord is labeledI in the key of C major. Although one
rarely finds two different musical pieces with identical melodies, chord progressions that are the same up
to transposition are common. For example, “I Got Rhythm” and “Blue Moon” start with the progression
I-vi-ii-V-I. Figure 2 shows a voicing of this progression in two different keys (C major and D major).

The examples considered above share another important feature: they involve only two types of chords,
major and minor triads. These are closely related. A major triad is a minor third stacked on top of a major
third, while a minor triad is a major third stacked on top of a minor third. Music theorists say that major and
minor triads constitute a “set class.”

1Pitch is frequency measured on a logarithmic scale. A piano keyboard is a linear representation of pitch; the smallest interval
between two keys on the piano is called asemitoneand equals one unit of pitch.
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Figure 2: TheI-vi-ii-V-I progression; the relative, parallel, and leittonwechsel progressions.
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Figure 3: Transposition, inversion, schritt, and the “relative” wechsel acting on major and minor triads in
equal temperament.

There are several relevant bijections between major and minor triads. Inversions, depicted in Figure 3
(top), reflect every chord around some fixed “origin” (here, C52); thus, the inversion of a major triad is a
minor triad and vice versa. Inversion does not commute with transposition. Most people would not identify
the inversion C major–F minor as “the same progression” as the inversion D major–E♭minor.

In contrast, the distance between (C4, E4, G4) and its inversion in G♯4 (A4, C5, E5)—also known as its
relative minor—is the same as the distance between (D5, F♯5, A5) and its inversion in A♯5, or relative minor.
Contextual inversions, calledwechsels, capture this similarity: the axis of inversion “follows” a chord as it
is transposed. The composition of two wechsels is a contextual transposition, orschritt, that moves a chord
and its inverted form by the same amount in opposite directions. Mathematically, schritts and wechsels
commute with transposition and inversion (though not with each other).

The neo-Riemannian transformations, first described by the music theorists Arthur von Oettingen [10]
and Hugo Riemann [11], form a group of bijections between the set of major triads and the set of minor triads
that commute with transposition and inversion. The wechsels “relative,” “parallel,” and “leittonwechsel”
generate this group (Figure 2, right). Such progressions are ubiquitous, from early music to rock. The
I-vi-ii-V progression contains two neo-Riemannian progressions (I↔vi andii↔V ).

Neo-Riemannian transformations belong to a larger class of so-calledcontextual transformations—
“contextual” because their action depends on the objects they act on. Music theorists, most notably Lewin [8],
have extended the definition of contextual transformations to apply to other chords and even ordered se-
quences of pitches. They have not restricted their investigations to chords common in tonal music; contex-
tual transformations appear in both tonal and atonal music.

2The “5” indicates the octave: C4 is middle C and C5 is an octave above middle C.
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2. Geometrical Music Theory

This paper interprets contextual transpositions and inversions as actions on the geometric spaces described
by Callender, Quinn, and Tymoczko [12, 1] (henceforth, CQT). Although schritts and wechsels are staples
of traditional musical set theory, they have not yet been incorporated into geometrical music theory. In the
following pages, we consider how schritts and wechsels can be realized as group actions on CQT spaces.

Formally, pitch is frequency measured on a logarithmic scale. There are twelve units of pitch (semitones)
to an octave. Pitches lie on a continuum; integer pitches form twelve-tone equal temperament (12-tet). An
ordered multiset of pitches corresponds to a point inn-dimensional space (Rn).

Musicians commonly recognize several groups acting on ordered pitch space: the permutation group (P),
whose elements reorder multisets of pitches; the group of octave shifts (O), which move an individual pitch
in a multiset up or down by some number of octaves; the transposition group (T), consisting of translations
shifting all the pitches in a multiset up or down by a fixed amount; and a two-element inversion group (I),
or reflection in the origin.

These groups induce equivalence relations onR
n by identifying points in the same orbit. Some equiv-

alence classes have familiar names. The equivalence class of a single pitch under octave shift is called its
pitch class. Pitch classes are indicated by letter names (“C”). Achord is an unordered multiset of pitch
classes. For example, any combination of C, E, and G pitch classes forms a “C major chord.” The set of
major chords is an example of achord type(also called atranspositional set class)—a set of chords related
by transposition. Finally, aset classis an equivalence class of chords related by transposition and inversion.
“Minor and major triads” form a set class.

The groupsO, P, T, andI are all generated by affine linear transformations onR
n (for example, addition

of (12, 0, . . . , 0) is an element ofO). Identifying (“gluing together”) orbits of these groups produces a family
of singular quotient spaces calledorbifolds. For example, pitch classes inhabit the circleR/O = R/12Z;
ordered multisets of pitch classes inhabit the torusR

n/O = T
n. Chords lie inR

n/OP and chord types in
R

n/OPT. Set classes are orbits underOPTI equivalence. Cardinality equivalence (C), which identifies
points whose coordinates form the same set, ignoring multiplicities, is an additional equivalence relation,
though not one arising from a group action.CQT spacesare quotients ofn-dimensional ordered pitch space
by any combination of the fiveOPTIC equivalence relations. (See Table S2 in [1] for a full description of
CQT spaces).

A directed line segment inn-dimensional ordered pitch space corresponds to a mapping from one musical
object to another. If we think of each coordinate as representing an instrumental “voice,” a directed line
segment indicates how voices move in time; any musical score can be represented as a succession of directed
line segments inRn or any of its quotient spaces. Musicians call these mappingsvoice leadings. Voice
leadings may inherit “length” from some distance function in ordered pitch space (see [5]).

3. A Bundle Representation

A chordv is a multiset of points on the pitch class circle. LetTx represent transposition (rotation) up by
x pitches andI represent inversion (reflection) in the axis passing through the origin (any other inversion
is a composition ofI and a transposition). Transposition and inversion anticommute (TxI = IT

−x). The
TI group is a topological group isomorphic to the orthogonal groupO(2), the isometries ofR2 that fix the
origin. Topologically,O(2) is two disconnected circles;SO(2) is the component containing the identity.
(In the discrete group theory normally used by music theorists, the group of transpositions and inversions is
isomorphic to the dihedral groupD24.)

Traditional music theory (see Forte [4]) classifies chords based on their memberships in set classes—
equivalence classes of chords related by transposition and inversion. Each set class is an orbit under the
action of theTI group. In most cases, theTI group acts transitively on set classes, meaning that the
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identity is the only group element that fixes elements of the set class. Exceptionsoccur at “singular” chords
possessing additional rotational or inversional symmetries. For example, the singular chord{2, 8} is fixed
by T6, T4I, andT

−2I.

The orbit of any chord without inversional symmetry is topologically identical to theTI group. That
is, it consists of two disconnected circles, arbitrarily labeledV + andV −; every point on one of the circles
represents some member of the set class. Figure 4, left, depicts the action of transposition and inversion on
this orbit. (Note that this is not a picture of the pitch class circle. Points, rather than multisets of points,
represent chords.) The orbit of a chord with inversional symmetry consists of only one circle. If a chord has
nontrivial rotational but not inversional symmetry, its set class is two circles, but “smaller” in that they are
fixed by transposition of12/k pitches for some integerk > 1.

V −

T

I

S

W

V +

V −

V +

Figure 4: T , I, S, andW acting on a nonsingular set class.

We define a schrittSx to be rotation ofV + up byx pitches andV − down byx pitches and a wechselW to
be a bijection between the two circles that commutes with transposition. Figure 4, right, depicts the action
of schritts and wechsels. Like transpositions and inversions, schritts and wechsels anticommute—that is,
SxW = WS

−x. If we think of elements of theTI group as acting on the left, thenSx andW are precisely
the right actions of transposition and inversion (physicists call this construction a torsor—see Lavelle [7]).
We refer to this group as theSW group.

Hook [6] showed that theSW group acting on triads is the dual to theTI group in the sense that each
group is the centralizer of the other; Fiore and Satyendra [2] extended this result to ordered pitch class
sets ink-tet. They described a schritt/wechsel group acting on the rational points inT

n as thegeneralized
contextual group.

With the exception of transposition, defining these transformations require some (perhaps arbitrary)
choices. Schritts require the designation of one circle as “positive” and the other as “negative,” inversions
require the choice of a preferred axis, and wechsels require an alignment ofV + andV −. It suffices to
define one inversion and one wechsel for every orbit, since all the others are compositions of inversion and
transposition or wechsel and schritt. There exists a “reference point”b for which W (b) = I(b); this base
point determines the action ofW andI on the entire orbit. The reference point is unique up to equivalence
modulo 6.

Our goal is to define schritts and wechsels on continuous set class space. We first consider the product
spaceRn/OPTI × O(2). This space has two connected components, each isomorphic toR

n/OPTI ×
SO(2), and natural left and rightO(2) actionsh(σ, g) = (σ, hg) and(σ, g)h = (σ, gh), respectively, forσ
a set class andg, h in O(2). The product space is aprincipal homogeneous spacefor the action ofO(2);
each copy ofO(2) is afiber.

Transposition is clearly continuous. The challenge is to make the choices required to define schritts,
wechsels, and inversions as continuous maps on the product space. Asectionis a continuous map from set
class spaceRn/OPTI to R

n/OPTI×O(2) such that each set classσ is mapped to some pair(σ, f), where
f is an element of the fiber associated toσ. The positive component—the one eachV + inhabits—contains
the image ofRn/OPTI. The canonicalI andW are inherited fromO(2).
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Because of the existence of singular set classes, theTI andSW groups do not act simply transitively on
any product space. In order to model the transposition/inversion group, we form a singular bundleB, with
the fiber at each point representing a group of transpositions and inversions that act transitively on that set
class. The fiber associated to an inversionally symmetric set class has only one component; for set classes
dividing the octave evenly intop parts, the fiber is one or two copies ofR/(12/p)Z rather thanR/12Z. This
fiber bundle is similar in structure toRn/OP.

Transpositions act continuously, even on a singular bundle. However, a schrittSx should move points on
V + andV − by x pitches in opposite directions. One cannot define a schrittSx that acts continuously on
B, as there exist inversionally symmetric set classes arbitrarily close to pairs of circlesV + andV − along
which Sx acts in opposite directions. However, there areregionsof set class space within which one can
define continuous schritts.

Fiore and Satyendra [2] described a structure on which theTI andSW groups act simply transitively
by essentially allowing every set class—even those with inversional symmetry—to havetwo canonical rep-
resentatives, one designated an inversion. Their construction may be realized by a section of the product
space rather than a section of the singular bundleB.

4. Linear Transformations on Ordered Pitch Class Space

Transposition and inversion are affine linear transformations acting on ordered pitch class spaceT
n or or-

dered pitch spaceRn. Is there a natural representation of contextual transpositions and inversions as affine
linear transformations?

Following Lewin [8], we refer to an ordered multiset of pitches or pitch classes as apitch segmentor pitch
class segment. Suppose the affine linear transformation onn-dimensional pitch class spacez 7→ Mz + b

commutes with transposition, whereM is an × n matrix andb is in R
n. Let 1 = (1, 1, . . . , 1). Then for

z ∈ R
n andc a real number,

M(z + c1) + b = Mz + b + c1,

soM fixes1. Sinceb does not depend onz (b determines a voice leading), we restrict our attentions to
linear transformationsz 7→ Mz. All transformations of this form also commute with inversion. It seems
reasonable that no nonzero subspace ofT

n be mapped to zero, so we assume thatM is invertible. Moreover,
M should preserve octave equivalence; that is,

M(z + (0, . . . , 0, 12, 0, . . . , 0)) ≡ z (mod 12),

which implies that the entries ofM are integers and hence the determinant ofM is ±1. Therefore,M is an
element of the general linear groupGL(n, Z). (Transformations that do not preserve octave equivalence are
rarely useful in music theory.)

Let G be the group of invertible linear transformations on the torusT
n that commute with transposition

and inversion:G = {M ∈ GL(n, Z) : M1 = 1}. We will investigate the structure ofG. In particular,
we seek a workable definition of the subgroups ofG consisting of transformations that preserve chord type
or set class—these will be candidates for the contextual transposition group and the contextual transposi-
tion/inversion group, respectively.

At this point, it is convenient to choose a basis forT
n so that1 is a basis vector. Using the basis

{1, (−1, 1, 0, . . . , 0), (−1, 0, 1, 0, . . . , 0), . . . , (−1, 0, . . . , 0, 1)}, every point(z0, z1, . . . , zn−1) can be writ-
ten in the form(x0 |x1, x2, . . . , xn−1) wherex0 = z0, x1 = z1 − z0, x2 = z2 − z0, and so on. (Think of
x0 as the first note in the segment, and the otherxi’s as intervals measured from the first note; “Twinkle,
Twinkle” is represented(0 | 0, 7, 7, 9, 9, 7) in C major and(2 | 0, 7, 7, 9, 9, 7) in D major.) With this basis,
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every element ofG can be written uniquely in the form



1 a1 · · · an−1

0
... A
0




where(a1, . . . , an−1) = a is in Z
n−1 andA is in GL(n − 1, Z). We represent elements compactly as pairs

〈a, A〉. Multiplication inG follows the rule

〈a, A〉 ∗ 〈b, B〉 = 〈aB + b, AB〉.

The set{〈a, id〉 : a ∈ Z
n−1}, whereid represents the(n−1)×(n−1) identity matrix, is a normal subgroup

of G that is isomorphic toZn−1. The following sequence is exact:

0 −→ Z
n−1 −→ G −→ GL(n − 1, Z) −→ 0.

We see thatG is isomorphic to the semidirect productZ
n−1

⋊ GL(n − 1, Z). Let CT represent the normal
subgroup{〈a, id〉 : a ∈ Z

n−1}.

Both CT andGL(n, Z) appear in musical contexts. Contextual transpositions are transformations that
transpose a pitch class segment and its inversion in opposite directions by equal amounts. Thus—if one
agrees with the assumptions made in this section of the paper—CTis a contextual transposition group.
In tuning theory, two tunings defined byn generating intervals are considered identical if the intervals of
one can be mapped to the intervals of the other (modulo octave equivalence) by a linear transformation in
GL(n, Z) [9].

We would also like to find a subgroup ofG that is a plausible candidate for the group of contextual
transpositions and inversions. The element〈a,−id〉 generates a group of order two; it represents the wechsel
that inverts the intervals in a pitch segment while fixing its first note.3 We form the exact sequence

0 −→ Z
n−1

⋊ Z2 −→ G −→ PGL(n − 1, Z) −→ 0.

(PGL is the projective linear groupGL(n − 1, Z)/{±1}.) Let CI denoteZn−1
⋊ Z2 = {〈a,±id〉} ⊂ G.

The groupCI of contextual inversions and transpositions is normal inG and containsCT as a normal
subgroup;G is the semidirect product ofCI andPGL(n − 1, Z). Elements ofCI act on points(x0 |x) :=
(x0 |x1, . . . , xn−1) in the pitch class torus by

〈a,±id〉(x0 |x) = (x0 + a · x| ± x).

(In other words, the amount by which the segment or its inversion is transposed is a linear combination of
its intervals.)

AlthoughCI acts simply transitively on the torus as a whole,CI does not act simply transitively on all
pointsin T

n—in fact, every pitch class segment with rational intervals is fixed by some nontrivial subgroup
of CI. For example, all 12-tet segments are fixed by〈12a, id〉. Taking the quotient ofCI by 12Z

n−1
⋊ Z2

produces the “12-tet contextual transposition/inversion group”Z
n−1
12

⋊ Z2.4

When we take voice leadings into account, theCT andCI groups are anything but well behaved. Not
only are they not isometries ofTn, but they are actually “chaotic”: For any pitch class segmenta and

3Another subgroup ofG that produces a similar structure is generated byretrograde, or reversing the order of a pitch class
segment. In some situations it will be more convenient to use this group, or perhaps to use both retrograde and contextual inversion.

4Hook [6] studied an isomorphic group forn = 3 extensively, in the context of transformations of pairs of 12-tet major and
minor triads (uniform triadic transformations). There exists an analogous group in any dimension that acts transitively on(n− 1)-
element linearly independent sets of pitch class segments.
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any nontrivial contextual transpositionA, there exists a pitch class segmentb arbitrarily close toa that is
mapped arbitrarily far froma by repeated application ofA to both segments. Voice leadings (line segments)
are badly distorted by these groups. This is rather discouraging, as one of the most attractive features of
CQT spaces is that they possess a natural notion of “size.” Tymoczko [13] observes that music theorists
sometimes seem to assume that there is a notion of sizeinherent in transformation groups—however, in
many reasonable musical situations it is essential to make this notion explicit.

5. Examples

David Lewin was particularly interested in contextual transpositions and inversions that preserve at least
one common tone. Examples from his work include the so-called RICH, TCH = RICH2, MUCH, TLAST,
TFIRST, FLIPEND, and FLIPSTART transformations [8]. These are all elements ofCI. Is CI generated
by common-tone preserving transpositions and inversions? The answer is yes. A set of generators is

〈(0, . . . , 0),−id〉, 〈(1, 0, . . . , 0), id〉, 〈(0, 1, 0, . . . , 0), id〉, 〈(0, . . . , 0, 1), id〉

(that is, the contextual inversion that fixes the first element of a pitch class segment, plus a linearly indepen-
dent set of contextual transpositions that preserve a common tone).

5.1. The PLR group. The CI group acting onT3 is generated by the linear transformationsW12 =
〈(1, 0),−id〉, W13 = 〈(0, 1),−id〉, andW23 = 〈(1, 1),−id〉 (note thatWij exchanges theith andjth
elements of the pitch class segment). It has the presentation〈W12, W13, W23 : W 2

12 = W 2
13 = W 2

23 =
(W12W13W23)2 = 1〉, its elements can be represented by paths in a honeycomb lattice (its Cayley graph),
and it is isomorphic toZ2

⋊ Z2.

This departs from musical tradition in several ways. TheCI group does not act simply transitively
on the orbit of any pitch segment that can be embedded in equal temperament. Moreover, the size of an
orbit depends on the pitch class segment chosen: if a pitch class segment can be embedded ink-tone equal
temperament, then its orbit under the action ofCI can have no more than2k elements. So, for example,
the orbit ofCI acting on(1, 5, 9) can have no more than six elements, since(1, 5, 9) can be embedded in 3-
tone equal temperament. In contrast, orbits of pitch class segments containing irrationally-related intervals
(e.g. the just-tempered major triad(0, 12 log2(5/4), 12 log2(3/2))) are infinite; in this case,CI acts simply
transitively. Although an infinite orbit is true to Oettingen and Riemann’s original conception of these
transformations, the usefulness of this group in the irrational case is considered and rejected by Lewin [8,
8.2.1].

ThePLR group is the restriction of theCI group to the orbit of a equally tempered major triad. LetM
be the orbit of(0, 4, 7) under theCI group:

M = {±(x, 4, 7) : x ∈ Z12}.

The stabilizer of(0, 4, 7) is the cyclic subgroup of order 12{〈(a, b), id〉 : 4a + 7b ≡ 0 (mod 12)}
generated by〈(5, 4), id〉. The quotient ofCI by this group is thePLR group, which is isomorphic to
Z12 ⋊ Z2. The generators ofCI are the familiar neo-Riemannian transformations:W12, W13, andW23 act
asR, P , andL respectively.5

5.2. Generated sequences. Let A = 〈(1), id〉 on T
2. Successive application ofA to an interval(0, g)

gives the sequence of “fifths”(0, g), (g, 2g), (2g, 3g), . . .. The mapg 7→ ng (mod 12) is the chaotic
dynamical system depicted in Figure 5. One result of this fact is that you can’t simultaneously tune fifths
and octaves—a fact that has plagued musicians for centuries! The orbit of the equally tempered major
third has three points and the orbit of the equally tempered perfect fifth has twelve points; the orbit of any
irrational interval is dense in the octave.

5This construction also appears in [3]. Note that the order of a pitch segment is crucial. For example,W12(7, 0, 4) = (0, 7, 3),
which is not the relative minor of(0, 4, 7).
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g 7→ 2g (mod 12)

12

6

1260

g 7→ 12g (mod 12)

0

12

6 12 0 6 12

6

12
g 7→ 3g (mod 12)

6

0 6 12

6

12

g 7→ 5g (mod 12)

g = et major third

g = et perfect fifth

g = et major third

g = et perfect fifth

Figure 5: The chaotic dynamical systemg 7→ ng (mod 12)

6. Conclusion

This paper explores two mathematical models for contextual transposition and inversion groups acting on
CQT spaces. The process of adapting algebraic structures to continuous spaces points out differences that
are concealed by discrete set theory. My feeling is that the first is more consistent with the literature, as
contextual transpositions and inversions are generally described as actions on set classes. However, the
second representation does arise in music theory, both in the work of Lewin and in the context of tuning and
scale theory.

It is not clear whether either of the models discussed is the “right” way to think about contextual trans-
formations in CQT spaces. Music, not mathematics, should motivate that investigation.
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