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Abstract 
 

In this paper, symmetry groups of certain classes of semi-regular tilings on the hyperbolic plane are discussed. 
 

Introduction 
 
Symmetry groups play an important role in tiling theory. Certain classes of tilings are studied and 
characterized based on the symmetries they contain. In color symmetry theory, a colored symmetrical 
tiling or pattern is constructed and analyzed based on the symmetry group of its corresponding uncolored 
tiling or pattern [4]. A color symmetry of a tiling or pattern is a symmetry of the uncolored tiling or 
pattern that maps all parts of the tiling or pattern having the same color onto parts of a single color – that 
is, the symmetry permutes the colors. If every symmetry of a tiling or pattern is a color symmetry, the 
tiling or pattern is said to have perfect color symmetry. For example, in the colored hyperbolic semi-
regular tiling shown in Figure 1(a), the 4-fold rotations about the centers of the 8-gons fixes black and 
interchanges the dark and light gray colors. Moreover, the reflections with axes the lines passing through 
the midpoints of two opposite edges shared by an 8-gon and a 6-gon fixes all colors. As a matter of fact, 
all symmetries of the uncolored tiling permute the colors of the given coloring, thus the tiling has perfect 
color symmetry. 

Semi-regular tilings and patterns have aesthetic appeal even more so if they have non-trivial color 
symmetry. A very striking feature, for instance, of Escher’s patterns is their color symmetry. In fact, 
Escher did pioneering work in color symmetry before the theory was developed by mathematicians and 
crystallographers. In Figures 1(b) and (c) are shown Dunham’s computer renditions of Esher’s patterns [9, 
10] which exhibit perfect color symmetry. In Figure 1(b), Escher’s Circle Limit III is superimposed on the 
semi-regular 3 · 4 · 3 · 4 · 3 · 4 tiling. The symmetry group of this tiling, as well as that of the uncolored 
Circle Limit III pattern, include 3-fold rotations with centers located at the vertices of the tiling and 
centers of the 3-gons; and 4-fold rotations with centers located at the centers of the 4-gons. All the 
symmetries in this group permute the colors of the pattern. In Figure 1(c), we present Dunham’s 
modification of the Circle Limit III [9, 10] using the semi-regular 5 · 3 · 5 · 3 · 5 · 3 tiling. The symmetry 
group of the uncolored pattern, as well as the symmetry group of the 5 · 3 · 5 · 3 · 5 · 3 tiling, include 3-
fold rotations with centers located at the vertices of the tiling and centers of the 3-gons; and 5-fold 
rotations with centers located at the centers of the 5-gons. All the symmetries of the uncolored pattern, 
and also the tiling, permute the colors of the fishes. 

It is interesting to note that certain aesthetically pleasing colored patterns and designs arise from 
semi-regular and regular tilings; the color symmetries of the patterns and designs emerging from the 
symmetries of the corresponding semi-regular and regular tilings. Another example is the Hyperbolic 
Spiderweb shown in Figure 1(d), Tony Bomford’s first hyperbolic rug [10, 11]. This rug was inspired by 
M.C. Escher’s Circle Limit IV shown in Figure 1(e), based on the regular 64 tiling in which four 6-gons 
meet at a vertex. The Hyperbolic Spiderweb displays non-perfect color symmetry. The reflection whose 
axis is a horizontal line passing through the center of the central 6-gon does not permute the colors. The 



 
Figure 1. (a) a colored semi-regular 4 · 6 · 8 · 10  tiling; (b) a rendition of Escher’s Circle Limit III; 

(c) a modification of Escher’s Circle Limit III; (d) Tony Bomford’s Hyperbolic Spiderweb; 
(e) a rendition of Escher’s Circle Limit IV. 

 
 



reflection fixes the color black of the innermost 6-gon, and at the same time interchanges black and brown 
in the seventh 6-gonal ring from the center. (There are eight 6-gonal rings of colors that make up the 
central 6-gon.) 

In this paper, we discuss symmetry properties of certain classes of semi-regular tilings on the 
hyperbolic plane. By a semi-regular tiling on the hyperbolic plane, we consider a p1 · p2 · … · pq tiling that 
is edge to edge, having regular polygons as its tiles; a p1-gon, a p2-gon, …, and a pq-gon surrounding each 
vertex in cyclic order, where (1/p1) + (1/p2) + … + (1/pq) < (q – 2)/2, and satisfying the additional 
property that the symmetries of the tiling act transitively on its vertices. If p1 = p2 = … = pq = p, we 
denote the semi-regular p1 · p2 · … · ps tiling to be the regular pq tiling, sometimes denoted by its Schlafli 
symbol {p, q}. 

The semi-regular tilings that will be studied in this work will be exhibited on the Poincaré circle 
model. This model is conformal, where the hyperbolic measure of an angle is just its Euclidean measure. 
Moreover, it has the additional property that it is represented in a bounded region of the Euclidean plane. 
This is useful since we desire to show an entire pattern. The points of this model are interior points of the 
bounding circle. The hyperbolic lines are circular arcs orthogonal to the bounding circle, including 
diameters. For example, the backbones of the fish in Figures 1(b) and (c) lie on hyperbolic lines. 
Moreover, the fishes (as well as the angels and devils in Figure 1(e)) are of the same hyperbolic size, 
showing that equal hyperbolic distances are represented by decreasing Euclidean distances as one 
approaches the bounding circle. 
 

A Method to Determine the Symmetry Groups of Semi-regular Tilings 
 
In this work, we will describe the symmetry group of a given semi-regular tiling using Conway’s orbifold 
notation [1, 2]. The Conway notation for crystallographic groups enumerates the type of non-translational 
symmetries occurring in the group. The symbol * indicates a mirror reflection while x indicates a glide-
reflection and a number n indicates a rotation of order n (that is, a rotation by 2π/n). In addition, if a 
number n comes after the * symbol, the center of the n-fold rotation lies on mirror lines. 

To describe the symmetry group of a given semi-regular tiling, the elements of the symmetry group 
will be indicated on a fundamental region of the tiling. By a fundamental region of the semi-regular tiling 
we mean a smallest region of the plane that can cover the entire plane by copies of itself using the 
symmetries of the tiling. Moreover, the images of a fundamental region under the symmetries do not 
overlap except at the boundary points. The existence of symmetries on a fundamental region will be 
indicated in this manner: a center of a rotation of order n, n > 2 will be labeled in the tiling with a small 
regular polygon of n sides. A 2-fold rotation will be labeled by a small circle. The axes of reflections will 
be illustrated by dark heavy lines. 

The key element in the determination of the symmetry group of a semi-regular tiling lies in the 
construction of the given semi-regular tiling. In [15], Mitchell constructed semi-regular tilings using the 
incenter process. The center of a polygon’s inscribed circle is called the incenter; located at the point of 
intersection of the polygon’s angle bisectors. The basic idea in the construction of a semi-regular p1 · p2 · 
… · pq tiling using the incenter process is to first create an auxiliary tiling, a tiling by q-gons. Then, in the 
tiling by q-gons, the incenters of the q-gons are connected to obtain the semi-regular tiling. 
 

Some Results on the Symmetry Groups of Semi-Regular Tilings 
 
We begin the discussion by considering the 4 · 6 · 8 · 10 tiling shown in Figure 1(a) and finding its 
symmetry group. The 4 · 6 · 8 · 10 tiling is constructed using the incenter process from a tiling by 
quadrilaterals with interior angles π/2, π/3, π/4 and π/5. Consider the centers of the inscribed circles of 
each quadrilateral. The centers are the incenters of the quadrilaterals. Connecting the incenters of the 
quadrilaterals will give the 4 · 6 · 8 · 10 tiling (Figure 2(a)). Note that a particular quadrilateral in the 
tiling by quadrilaterals has 4, 6, 8, and 10 quadrilaterals meeting at each of its vertices. Consider 



quadrilateral ABCD shown in Figure 2(b). The eight quadrilaterals meeting at C has eight incenters. When 
connected, these quadrilaterals give an 8-gon about C. Also, there are six quadrilaterals that meet at B. 
The incenters of these quadrilaterals give rise to a 6-gon about B. Similarly, the four and ten quadrilaterals 
meeting at A and D, respectively, give rise to a 4-gon and a 10-gon about A and D. There will be 4-, 6-, 8-
, 10-gons arising from the vertices of any quadrilateral. 

It can be observed that a fundamental region of the tiling by quadrilaterals is also a fundamental 
region of the 4 · 6 · 8 · 10 tiling, as displayed in Figure 2(c). Figure 2(d) shows the symmetries of the 4 · 6 
· 8 · 10 tiling, which include reflections with axes passing through the sides of a fundamental region and 
5-, 4-, 3- and 2-fold rotations with centers lying on the vertices of a fundamental region. Thus, the 4 · 6 · 8 
· 10 tiling, using Conway’s notation, can be described as having symmetry group *5432. 

 

 
Figure 2. The 4 · 6 · 8 · 10 tiling (a) obtained from a tiling by quadrilaterals (dashed) using the incenter 
process; (b) on a tiling by quadrilaterals (dashed) with a particular quadrilateral ABCD; (c) on a tiling 

by quadrilaterals (dashed) with a fundamental region and (d) some of its symmetries on 
a fundamental region. 

 
The process just described of obtaining the symmetry group of the 4 · 6 · 8 · 10 tiling can be applied 

to obtain the symmetry group of the semi-regular p1 · p2 · … · pq tiling, where p1, p2, …, pq are all distinct 
and even. We now have the following result: 
 
Theorem 1. The semi-regular p1 · p2 · … · pq tiling, where p1, p2, …, pq are all distinct and even, has 
symmetry group *(p1/2)(p2/2)…(pq/2). 
  
Proof. Consider a tiling by q-gons, where the q-gons have interior angles 2π/p1, 2π/p2, …, and 2π/pq such 
that 1/p1 + 1/p2 + … + 1/pq < (q – 2)/2. This tiling is obtained by reflecting a q-gon across its sides [3]. A 
q-gon serves as a fundamental region of the tiling. Each q-gon has an incenter, which is the center of the 
circle inscribed in the q-gon. Incenters of adjacent q-gons are joined to produce a semi-regular tiling. 
Since the angles of the q-gons in the tiling are 2π/p1, 2π/p2, …, and 2π/pq, then a semi-regular p1 · p2 · … · 
pq tiling is obtained. 

Since p1, p2, …, pq are distinct, a q-gon has trivial symmetry. Thus, a fundamental region of the q-
gon tiling, which is a q-gon, is also a fundamental region of the semi-regular tiling. The reflections with 
axes passing through the sides of a q-gon are symmetries of the semi-regular tiling. These reflections 
yield the (p1/2)-, (p2/2)-, …, and (pq/2)-fold rotations with centers at the vertices of a q-gon. Hence, the 
symmetry group of the semi-regular p1 · p2 · … · pq tiling is *(p1/2)(p2/2)…(pq/2).             ■ 

 
The next example pertains to a tiling belonging to the class of r · s · r · s · … · r · s tilings consisting 

of (q/2) r-gons and (q/2) s-gons. 
The 5 · 3 · 5 · 3 · 5 · 3 tiling shown previously in Figure 1(c), is derived from a tiling by 6-gons, 

where a given 6-gon has alternating interior angles 2π/5 and 2π/3. The incenters of the adjacent 6-gons 
are joined to obtain the 5 · 3 · 5 · 3 · 5 · 3 tiling (Figure 3(a)). A fundamental region of a tiling by 6-gons is 
a tile one-sixth of a 6-gon, in particular, a triangle with interior angles π/5 and π/3; this is also a 



fundamental region of the 5 · 3 · 5 · 3 · 5 · 3 tiling (Figure 3(b)). There are reflections with axes passing 
through the sides of a fundamental region and 5- and two 3-fold rotations with centers on the vertices of a 
fundamental region (Figure 3(c)). Thus, the 5 · 3 · 5 · 3 · 5 · 3 tiling has symmetry group *533. 
 

 
Figure 3. The 5 · 3 · 5 · 3 · 5 · 3 tiling (a) obtained from a tiling by 6-gons (dashed) using the incenter 

process; (b) on a tiling by 6-gons (dashed) with a fundamental region and 
(c) some of its symmetries on a fundamental region. 

 
The next theorem gives the result on the symmetry group for any r · s · r · s · … · r · s tiling. 

 
Theorem 2. The alternating semi-regular r · s · r · s · … · r · s tiling, consisting of (q/2) r-gons and (q/2) s-
gons, has symmetry group *rs(q/2). 
 
Proof. Following the essence of the proof in the previous theorem, the r · s · r · s · … · r · s tiling is 
obtained by applying the incenter process to a tiling by q-gons, where a given q-gon has alternating 
interior angles 2π/r and 2π/s. The incenters of adjacent q-gons are joined to produce a semi-regular tiling. 
Since each q-gon in the tiling has alternating interior angles 2π/r and 2π/s, a semi-regular r · s · r · s · … · r 
· s tiling is obtained. 

A fundamental region of the tiling by q-gons, as well as the r · s · r · s · … · r · s tiling, is a triangle 
with interior angles π/r, π/s and 2π/q. The reflections with axes passing through the sides of a fundamental 
region are symmetries of the semi-regular tiling. These reflections give rise to the r-, s- and q/2-fold 
rotations with centers at the vertices of a fundamental region. Thus, the symmetry group of the r · s · r · s · 
… · r · s tiling is *rs(q/2).                   ■ 
 

The last theorem discusses the symmetry group of the 3 · r · 3 · r · 3 · s/2 tiling, where s ≥ 6 and s is 
even. This tiling is a semi-regular tiling with auxiliary tiling constructed from a regular rs tiling. The 
symmetry group of this type of tiling depends on the relationship between r and s. 

We first look at two examples before giving the result. The first example discusses the 3 · 4 · 3 · 4 · 3 
· 3 tiling; this is the case when s ≠ 2r. The second example discusses the 3 · 4 · 3 · 4 · 3 · 4 tiling; this is 
the case when s = 2r. 

For the first example, let us discuss the construction of the 3 · 4 · 3 · 4 · 3 · 3 tiling first. Consider 
a 46 tiling shown in Figure 4(a). On the tiling, we show the center O and a vertex Y of a 4-gon, a point X 
on the edge of the 4-gon containing Y and X’. X’ is obtained by rotating X by an angle π/2 about O. Now 
OX, OX’ and X’Y become the motif to generate the tiling by 6-gons shown in Figure 4(b). This tiling by 
6-gons is obtained by using as symmetries the rotations of 2π/4 = π/2 about the center of each 4-gon and 
reflections across the edges of the 4-gons. Moreover, each 6-gon has interior angles 2π/3, 2π/4, 2π/3, 
2π/4, 2π/3 and 2π/3. The incenter process will give us the desired tiling shown in Figure 4(c). 

Now, Figure 4(d) shows the 3 · 4 · 3 · 4 · 3 · 3 tiling superimposed on a tiling by 6-gons. A 
fundamental region for the tiling is also shown. The symmetries of the 3 · 4 · 3 · 4 · 3 · 3 tiling are 4-fold 



rotations about the centers of the original 4-gons in the 46 tiling and reflections whose axes lie across the 
edges of these 4-gons. The reflections yield a 3-fold rotation about the vertices of the 4-gons. The center 
of a 4-fold rotation does not lie on any axis of reflection (Figure 4(e)). Thus, the symmetry group of the 3 
· 4 · 3 · 4 · 3 · 3 tiling is 4*3. We would like to mention that the Hyperbolic Spiderweb in Figure 1(d) has 
been constructed from the dual of the 46 tiling, which is the 64 tiling. Moreover, the symmetry group of 
the 3 · 4 · 3 · 4 · 3 · 3 tiling is the same color fixing group of Escher’s Circle Limit IV, shown in Figure 
1(e). 
 

 
Figure 4. (a) The motif on a 46 tiling; (b) tiling by 6-gons (dashed) on the 46 tiling (solid). The 3 · 4 · 3 · 4 
· 3 · 3 tiling (c) obtained from a tiling by 6-gons (dashed) using the incenter process; (d) on a tiling by 6-

gons (dashed) with a fundamental region and (e) some of its symmetries on a fundamental region. 
 
The second example we will look at illustrates the case when s = 2r. Consider the 3 · 4 · 3 · 4 · 3 · 4 

tiling shown in Figure 1(b). This tiling is obtained from the regular 48 tiling as follows: Take the center O 
and a vertex Y of a 4-gon, a point X on the edge of the 4-gon containing Y and X’. X’ is obtained by 
rotating X by an angle π/2 about O (Figure 5(a)). Now OX, OX’ and X’Y constitute the motif to generate 
the tiling by 6-gons (Figure 5(b)). This tiling by 6-gons is obtained by using as symmetries the π/2 
rotations about the center of each 4-gon and reflections across the edges of the 4-gons. Moreover, each 6-
gon has interior angles 2π/3, π/2, 2π/3, π/2, 2π/3 and π/2. The incenter process will give us the 3 · 4 · 3 · 4 
· 3 · 4 tiling (Figure 5(c)). 

Figure 5(d) shows a 3 · 4 · 3 · 4 · 3 · 4 tiling superimposed on a tiling by 6-gons. Figure 5(d) also 
shows a fundamental region of the tiling, which is a triangle. One vertex of the triangle is a center of a 3-
fold rotation (center of a 6-gon). Another vertex is a center of a 4-fold rotation (center of a 4-gon). There 
is another 3-fold rotation at the third vertex of the triangle where the sides of the 6-gons intersect. In 
Figure 5(e), we show a fundamental region of the 3 · 4 · 3 · 4 · 3 · 4 tiling. The centers of 4-fold and 3-fold 
rotations are shown on axes of reflections. Thus, the symmetry group of the 3 · 4 · 3 · 4 · 3 · 4 tiling is 
*433. Note that this result agrees with Theorem 2. 

 



 
Figure 5. (a) The motif on a 48 tiling; (b) tiling by 6-gons (dashed) on the 48 tiling (solid). The 3 · 4 · 3 · 4 
· 3 · 4 tiling (c) obtained from a tiling by 6-gons (dashed) using the incenter process; (d) on a tiling by 6-

gons (dashed) with a fundamental region and (e) some of its symmetries on a fundamental region. 
 
We now give the result for the 3 · r · 3 · r · 3 · s/2 tiling. 

 
Theorem 3. The semi-regular 3 · r · 3 · r · 3 · s/2 tiling, where s ≥ 6 and s even, has symmetry group r*s/2 
if s ≠ 2r; otherwise, it has symmetry group *r33. 
 
Proof. Starting with an rs tiling, take the center O and a vertex Y of an r-gon. Then select a point X on the 
edge of the r-gon containing Y such that m<OXY = 2π/3. Rotate X by an angle of 2π/r about O to get X’. 
Using OX, OX’ and X’Y as the motif, generate a tiling by 6-gons using as symmetries the r-fold rotations 
about the centers of each r-gon and the reflections across its edges. The incenter process can easily be 
adapted to this situation. Since the interior angles of the 6-gons are 2π/3, 2π/r, 2π/3, 2π/r, 2π/3 and 4π/s, 
we obtain a 3 · r · 3 · r · 3 · s/2 tiling, for s ≥ 6 and s even. 

The symmetry group of the tiling by 6-gons and the 3 · r · 3 · r · 3 · s/2 tiling is r*s/2 if s ≠ 2r. The 
tiling by 6-gons was generated using as symmetries the r-fold rotations about the centers of the r-gons 
and the rs tiling, and the reflections across the edges of those r-gons. The reflections from the rs tiling, 
with axes the lines emanating from the centers of the r-gons to the vertices and midpoints of the edges are 
not symmetries of the tiling by 6-gons as a result of the introduction of a motif which does not have these 
as symmetries. The reflections across the edges of the r-gons give rise to the s/2-fold rotation about the 
vertices of the r-gons. 

If s = 2r, the reflections across the edges of the r-gons give rise to the r-fold rotations about the 
vertices of the r-gons. Consequently, reflections will exist with axes lying along the diagonals of the 6-
gons containing the vertices which are centers of 2π/r and 2π/3 rotations. The reflections will yield 2π/3 
rotations with center situated at the center of the 6-gons. A fundamental region of the tiling by 6-gons is a 
triangle which is one-sixth of a 6-gon. One vertex of a triangle is a center of a 2π/3 rotation (center of a 6-
gon); another vertex is a center of a 2π/r rotation (a vertex or a center of an r-gon). The sides of the 6-



gons form a 2π/3 rotation at the third vertex of the triangle. Moreover, the vertices of the triangle are 
situated at the sides of the r-gons, which lie on axes of reflections of the tiling. Hence, the symmetry 
group of the 3 · r · 3 · r · 3 · s/2 tiling is *r33.                 ■ 
 

Conclusions and Future Work 
 
In this short note, we discussed symmetry groups of some classes of semi-regular tilings on the 
hyperbolic plane. The method used to describe the symmetry groups may be extended to determine the 
symmetry groups of other general classes of hyperbolic semi-regular tilings. Among such tilings are the 
pk · r · pk · s tiling, the pk · r tiling, the p1 · p2 · … · pk · r tiling, and the p1 · p2 · … · pk · r · pk · … · p2 · p1 · s 
tiling. 

This work will facilitate future, related research on the colorings of semi-regular tilings in the 
hyperbolic plane, using the knowledge of the symmetry group structure discussed here. Colorings arising 
from general classes of semi-regular tilings may be analyzed and characterized, including the study of 
properties of related symmetry groups and their subgroups. We hope results presented here will lead to 
many aesthetically pleasing colored tilings. 

 
Remarks: The authors would like to thank Professor Douglas Dunham for the use of the images presented in Figure 1 [6-13]. The 
semi-regular tilings presented in this paper were generated using the Mathematica packages L2Primitives and Tess [14, 17]. For a 
more detailed discussion on the study of semi-regular tilings with the aid of technology, refer to [5]. 
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