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Abstract 

 
        A simplified version of the use of L-Systems as a method of modeling plant growth is described. We do not 

insist on the accuracy of the models; instead we focus on producing aesthetically pleasing imitations of plants 
that can be used in creating computer-generated landscapes. 

 
1. Introduction  

  
 I have always been fascinated by the beauty of plants and 
flowers, and ever since I bought my first home computer I 
have searched for ways to imitate the structure and growth 
patterns of plants using ideas from mathematics and 
computer science. At first my “plants” were stick figures 
made up of straight lines for branches and discs for 
flowers; the screen resolution was 320 by 200, and there 
were only three colors available. Gradually, as the 
capabilities of the computers improved, so did my plant 
models. The sticks became curved rendered tree branches 
or plant stems and the disks became intricate 
inflorescences. Along the way I searched out articles 
suggesting new methods of generating plants. In the late 
1980’s a number of computer scientists presented new 
ideas for modeling plant growth and several presentations 
were made on this topic at SIGGRAPH conferences. I was 
not so much interested in the accuracy of the models, but 
more in the aesthetic possibilities for artistic works. Also, 
I am a teacher, and this was an exciting new way to get 
students interested in math. It makes a great topic for a 
class  in  computer science.  For a  comprehensive  list  of 

  papers that deal with the theory of string rewriting, formal        Figure 1: An interpretation of Example 3 
  languages and L-Systems see the references. 

            In this paper I will present my own simplified adaptation of this method of modeling plants that           
can be used in a class in programming. Processing the strings is a real live application of a stack and its   
implementation. Writing functions that draw curves and leaves and flowers gives students the 
opportunity to use some elementary trigonometry and algebra. 
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2. L-Systems and String Rewriting 
 

  A biologist from the University of Utrecht, Aristid Lindenmayer, using ideas from formal language 
theory, conceived of a method for modeling the structure and growth of plants by generating new 
character strings from existing ones by replacing one or more characters in a string by strings of 
characters in a parallel manner. Here is a simple example (a formal definition can be found in the 
references): We start with a single character which we call the axiom, and a set of rules which we call 
productions. Each production has a left side and a right side. In our first examples we will make the left 
side of each production a single character and the right side a string of characters. A plant will be 
associated with a string of characters that initially will consist of a single character, the axiom. To get to 
the next stage in the plant’s development we will traverse the string of characters from left to right. 
Whenever we encounter a character that is the left side of a production, we replace that character by the 
right side of that production. By convention, when we encounter a character that is not the left side of 
any production we replace that character by itself. 

 
Example 1.  Our alphabet will consist of the set of characters {I,  [ , ] , ( , )} and the axiom will be the 
character I. Our L-System will have one production: I → I[I](I)I This is what our string will look like 
after one and two stages: 
Axiom: I 
Stage 1:  I[I](I)I, Stage 2:   I[I[I](I)I](I[I](I)I)I[I](I)I 
At stage 3 the string will consist of 148 characters! 

 

 
Figure 2:  Stages 1 – 5 of a simple example, Example 1 

 
   Now let us give a geometric interpretation to this string. We write a computer program and in it we 

write a function plant with parameters stage, x, y, angle, length. Executing this function, plant(stage, x0, 
y0, π/2, 10), will result in the following steps: the initial point will be set at x0,y0 and a variable angle 
will be set to π/2.  A variable length will be set to 10/stage. The string will be traversed from left to 
right one character at a time. Each time I is encountered the function will draw a line segment of length 
length at the current angle angle. When either [ or ( is encountered, the variables x, y and angle will be 
“pushed” onto a stack (their current values will be saved) and if the character is [ the variable angle will 
be increased by some small angle (for example  π/3), if the character is (  the variable angle will be 
decreased by some small angle. That is, we interpret [ as a branch to the left and ( as a branch to the 
right. When a  ] or ) is encountered the old values of x, y and angle are “popped”off of the stack, that is, 
the parameters that existed before we branched off are recovered. Figure 2 shows this interpretation of 
several stages of Example 1. 
  Figure 1 is a second example of a very simple L-system: Axiom I and one production:   



I →  I[IL[I[IF]]](ILF)I.   Here two new characters have been added to our alphabet, “L” which we 
interpret as a “leaf” and “F” which we interpret as a “flower”. We also added some curvature to the line 
segments. 

 

                         Figure 3. Three “plants” generated by the same  Stochastic L-System 
 

      We can make our plant growth less predictable by using probabilities in what we might call a 
“Stochastic L-System”. Figure 3 shows three “plants” resulting from a single L-System. In a stochastic 
L-System we allow two or more productions to have the same left side (I) but different right sides. In 
Figure 3 we have used two productions with left side I. The first production has the same right side as 
the L-System in Figure 2, "I[I][I]I", and the second has right side "I(I)(I)". In general if we have n 
productions with the same left side we assign a probability (from nonnegative numbers  p1,…,pn  whose 
sum is 1) to each production. In the subroutine that replaces the old string with the new, when we 
encounter an “I” we generate a random number between 0 and 1. This number will determine which of 
the productions we use. In Figure 3  p1 =  .45  and p2 = .55. 

 
3. More Realistic Looking Plants 

 
 

 
   Figure 4a.  A “conifer”                   Figure 4b.  “Fuzzy tree” 

 



 
  Rules for Figure 4a: 
  I → I[AB](AB) 
  A→ A[B]        
  B → [B](B)B[B](B)B 
    Axiom = I 

     Rules for Figure 4b. 
      I →   I[IAB](IAB) 
     A →  A(B)[B] 
     B →  A[B]B(B)B 
    Axiom = I 

 
I wanted to design a tree that looked like a conifer with needles instead of leaves. So in Figure 4a you 
can see the third production has a string containing many B’s which I interpreted as very short thin line 
segments.  Figure 4b is an accidental result of experimenting with the rules in Figure  4a. You can see 
that the rules are quite similar. But in Figure 4b I assigned a very large angle of curvature to the 
interpretation of the segment A, which caused each segment to make a full circle rather than a branch. I 
liked the effect, so kept it in my gallery. (Notice that both trees could use a haircut!) 
 

4. Evolution of Inflorescences 
 

The botanist C.L. Porter in his book [2] presents simple diagrams of some of the more common 
inflorescences and their method of compounding. When I first saw them I thought what fun to write a 
computer program that draws them! We will illustrate how to use string rewriting to generate five of the 
common inflorescences. 
 “An umbel is an inflorescence having several branches arising from a common point at the 
summit of the peduncle. If these branches end in flowers we have a simple umbel; if they end in 
secondary umbellets we have a compound umbel” [2]. Using just the letter I to represent a line segment, 
and [ ] (enclose a branch to the left), and ( ) (enclose a branch to the right), let us make a first attempt at 
an umbel structure minus the flowers:   

 
          Stage 1            Stage 2                           Stage 3                                 Stage 4 

Figure 5. Umbel sans flowers.  Axiom: I    Production: I  → ((I))(I)[(I)][I][[I]] 
 

 
     

           Stage 1                  Stage 2                                   Stage 3                                           Stage 4   
Figure 6. Adding flowers to the end of each branch.   Axiom: I   Production: I → ((IF))(IF)[(IF)][IF][[IF]] 



 
 To make  the  umbel  more  realistic,  we  have  to use more 
 symbols than just I and F. We  need  to  add some curvature 
 to the stems and some randomness to the length and the 
amount  of  curvature  of  each  stem.  Adding  curvature  is 
relatively easy. We use the function that draws a line 
segment taking parameters x,y, angle, length, thickness and 
color and which returns the new endpoint (x,y). Define a 
new function curve with the same parameters but add one 
more parameter curvature. The new function is very 
simple; divide the parameter length by some n > 1 and use 
the function segment to draw n small segments, each time 
increasing or decreasing the angle parameter by the 
curvature angle. As the drawing angle will change during 
the execution of this function it should return the current 
angle as well as the current value of x and y. 
         Figure  7   shows the result embellished by a stem 
with compound leaves that have been created by almost the 
exact  set of rules that defined the flower, except, as you 
can see, at each stage there is a division into 3 rather than 5. 

        Figure 7  Family umbellifereae 
 
       “A monochasium is a peduncle bearing a terminal flower and, below it, one branch that produces 

a single lateral flower. The terminal flower is older. This is a simple monochasium . A repetition of this 
on the lateral branches produces a compound monochasium.” [2] See Figure 8. 
 
 

 
       Stage 1                   Stage 2                            Stage 8                                      Stage 12 
      Figure 8.   Rules for a monchasium:   I → I,   A → I(A)B ,   B → B ,  Axiom:  A  

 
 “A dichasium is a peduncle bearing a terminal flower and a pair of branches that produce lateral 
flowers. The oldest flower is the central one. This simple dichasium is a common unit making up parts 
of many more complex inflorescences. A repetition of this on a lateral pair of branches produces a 
compound dichasium.” [2] See Figure 9. 
 
Rules for a dichasium:  A→ I[A](A)B,  axiom: A        



I is interpreted as a line segment, A as a line segment topped by a small flower, and B a longer line 
segment topped by a larger flower. 
 

   Stage 1              Stage 2                              Stage 3                                                Stage 5 
Figure 9.  Stages in the development of dichasia 

 
 “A panicle is a more or less elongated inflorescence with a central axis along which there are 
branches which are themselves branched. These may be a sequence of blooming from the base upward, 
but some panicles are made up wholly of dichasia.” [2] See Figure 10. 
 

 
  Stage 1               Stage 2                            Stage 3                                         Stage 4 
                     Figure 10.  Rules for a panicle:  I → A[IF]A(IF)IF,  axiom I 
 

5. Let the Clock Tick – Parametric L-Systems 
 
We can keep a clock ticking and allow variables to represent the time stages in the plant’s growth. For a 
given left side of a production we can have more than one right side; the particular one chosen will depend 
on the value of t. To illustrate this idea here is a simplified version of a flowering sequence where the 
flowers mature earlier on the lower branches. In this example the axiom is I and we let t represent the stage, 
that is at t = 0 the string consists of the axiom I.  
 
The productions are: 
I → A[B]I for t ≤ 2  
I → AB for t = 3 
B → Af(0) 
f(n) → f(n+1) for n ≤  2 
f(3) → ε (the empty string 



   I             A             B           f(0) bud    f(1) flower           f(2) fruit         f(3) seedpod 

 

 
Figure 11. Representation of string characters for a parametric L-System 

 
Figure 11 shows the representation of each of the characters in the string. (If you are a teacher,    
note that writing the routines that draw each of the figures involves a little math as well.) 
 

 
                 Stage 1                 Stage 2                   Stage 3                   Stage 4 

 
                          Stage 5             Stage 6               Stage 7                  Stage 8 

Figure 12. 8 stages in the parametric L-system 
      
Figure 12 illustrates the flowering sequence and life cycle of the “reproductive organs” of the 
plant. 



Conclusion 
 

String rewriting can be taught to students as a way to generate interest in mathematics and 
computer programming. Space constraints have allowed me to present only a very simple 
introduction to this exciting topic. For an excellent explanation of the rules that describe plant 
development, modeling of cellular layers and fractal properties of plants I highly recommend 
Prusinkiewicz’ beautiful book [3]. Some of the other references are more mathematical and contain 
a wide variety of applications of formal language theory, L-Systems and string rewriting. 

 

Figure 13.  Imaginary garden 
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