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Abstract 
 

This paper provides many bridges: it connects graphical representations of plants’ evolving properties with 
structural geometric representations; a visualization of plants’ structure, from a simple branching formation to more 
complex plant architectures, and further to aesthetically pleasing, simulated, 3D plant-like representations. This is 
accomplished by use of L-systems in combination with Turtle Graphics, being displayed in a VRML viewer and 
then enhanced in terms of the background with Adobe Photoshop™. This process leads to many questions, such as: 
Can we take an artistic license and design these kinds of artificial plant forms? What creative value do 
corresponding pictures have? What creative value is in understanding the process of their design and related 
dynamic representation? Recognizing that 2D media does not do justice to the dynamics of the 3D-based processes, 
the authors are preparing an animated representation of the design process that will be incorporated in the 
Conference CD. 

 
 

Introduction  
 
Just as the path to understanding the nature of light and gravity by Einstein involved imagining the 
sensation of moving at the speed of light, or riding a photon, we can improve our understanding of the 
branching structure of plants by riding along on the embryonic plant tissue that is actively dividing, such 
as is found at the tip of stems and roots, the meristems. The average observer of plants and their structure 
rarely appreciates the geometric structure beyond van Hiele’s [1] first level of geometric reasoning, that 
of visualization [2]. Further understanding at higher levels of van Hiele’s geometric reasoning may be 
achieved through riding the graphical turtle of Abelson and diSessa [3] and adopting the viewpoint of a 
plant meristem. The meristem comprises undifferentiated cells at growing points on shoots and roots. 
Unlike in other parts of a plant, where differentiated cells will divide to produce only cells of the one 
type, meristematic cells can produce different types of cells and subsequently different types of plant 
tissue and organs, such as stems, leaves, roots, flowers, fruit and seeds. By riding on the tip of a meristem, 
we can trace the growth trajectory of individual internodes (stems) to nodes, or positions of further 
meristems, where the plant branches. This can be achieved by using L-systems combined with turtle 
geometry [3]. 
 
In this paper, we step through the process of riding the meristem(s) to produce plant-like graphical images 
for simple, unbranched plants through to more complex, highly branched structures using the combination 
of L-systems and turtle graphics. The recursive nature of L-systems allows the rules for achieving such 
branching patterns to be succinct. Often, less than two lines of instructions can produce images that are 
remarkably like real plants. On achieving higher levels of geometric reasoning [1], such as being able to 
articulate different types of branching (Level 2: Analysis), making and testing hypotheses about L-system 
rules and consequent changes to branching patterns (Level 3: Informal Deduction), constructing proofs 
using axioms, definitions and rules (Level 4: Formal Deduction), we can move beyond concrete examples 



that can be found in nature to unexplored areas of plant structure using abstraction of L-systems and turtle 
graphics (Level 5: Rigor). The latter is where we can become creative as artists and use the mathematics 
of L-systems [4] and turtle graphics to make new plant-like patterns that don’t exist in reality, but which 
might have an aesthetic appeal. 
 
 

L-systems 
 

The idea of L-systems emerged from analyses of the growth and branching patterns of filamentous algae 
by Aristid Lindenmayer [5], after whom they are named. Symbols in a string were mapped to different 
types of cells in the filament. On cell division, by a parent cell, the types of cells that result, child cells, 
depend on the type of parent cell that undergoes division. Sometimes, the type of child cells also depends 
on the type of cells surrounding the parent cell. 
 
Parametric L-system grammars are parallel string rewriting systems and are formally defined as a 4-tuple: 

 
G = {V, S, ω, P}, where 
V (the alphabet) is a set of symbols containing elements that can be replaced (variables) 
S is a set of symbols containing elements that remain fixed (constants) 
ω (start, axiom or initiator) is a string of symbols from V defining the initial state of the system 
P is a set of rules or productions that define the way variables (predecessor) are replaced by 
combinations of constants and variables (successor). In a production rule the predecessor is 
replaced by the successor. In this language the symbol “=” represents “is replaced by.” 

The productions, or rules, are applied iteratively, beginning with the axiom string, but a given symbol 
from V can appear in both successors and in predecessors in a circular fashion, so that the resultant 
behavior will be recursive. This leads to the pattern of self-similarity, so often observed in real plants [4]. 
 
 

Parametric L-systems and Turtle Graphics 
 

A significant breakthrough came in 1986, when L-systems were combined with Turtle Graphics [6]. In 
the latter, a set of symbols determine the behavior of a Turtle in 3-space. For example, F, commands the 
Turtle to move forward (in the direction it is facing) a defined distance and draw a line along that path. 
Other commands determine changes in direction in 3-space in much the same way a pilot flies an aircraft: 
by yawing about a z-axis (+/-), rolling about an x-axis (>/<) or pitching about a y-axis (&/^). 
 
A further enhancement to the symbol set was the addition of “parameters”. For almost any instruction, a 
parameter can be specified. For example F(.8) instructs the turtle to move forward and draw a line (or 
cylinder) eight tenths of the default length for F. >(45) instructs the turtle to roll 45°, c(7) instructs the 
turtle to use color number 7, when drawing. 
 
By using a combination of Turtle and non-Turtle symbols in L-systems, complex patterns can be 
produced with a succinct set of instructions. For example, 

 
recursion 4 
angle 30 
axiom FA 
rule A = +FA 
rule F = FF 



after 4 iterations, will produce the string, 
 

FFFFFFFFFFFFFFFF+FFFFFFFF+FFFF+FF+FA 
 
This process, while iterative, is referred to as recursive because patterns are repeated within patterns. In 
other words the resulting string exhibits self similarity at different scales. This makes more sense, when 
the symbols are translated into a graphical path by the Turtle. 
 
Some additional symbols in the Turtle Graphics language allow the drawing of branches or polygonal 
surfaces. The symbols “[” and “]” are used to allow branching. The symbol “[” instructs the Turtle to 
remember where it is and what direction it is facing and the symbol “]” instructs to the Turtle to return to 
that position and face in that direction after carrying out instructions enclosed by these symbols. 
 
The symbols “{” and “}” enclose symbols that result in the painting of a surface bounded by a polygon. 
The polygon is defined by the symbols “g” and “.”. The symbol “g” is similar to an “F” in that the Turtle 
is instructed to move forward and draw an edge. The symbol “.” instructs the Turtle to remember a vertex. 
The symbol “}” closes the polygon, by causing the Turtle to resume the position of the first vertex. The 
edges and vertices form the polygon. 
  
By combining all these symbols, a variety of plant-like structures can be produced. The examples 
presented in this paper use the lparser software [7, 8] with the generated plants being displayed in a 
VRML viewer (available from the same site) and are then enhanced in terms of the background with 
Adobe Photoshop™. 

 
 

Branching Patterns in Plants  
 
The simplest plant structure is an unbranched plant in which only the apical meristem is active. This 
results in a structure that may resemble a palm tree. The axiom for such a structure could comprise a stem 
(S) and a whorl (W) of leaves (L) that appear at the apex. The eight leaves are positioned in the whorl by 
rolling about the stem axis in increments of 45° using the > instruction.  
 

 
Figure 1: Unbranched plant. 

 
Figure 2: Plant with apical branching. 

 
For Figure 1 there are four instructions that precede the axiom and rules. The “recursion” instruction 
dictates the number of times the rules are iterated. The “switch_yz” instruction swaps the y and z axes so 
the y axis projects out from the scene toward the person viewing it, while the z axis runs up and down on 
the plane of the scene. The “shape” instruction tells the turtle to draw cylinders. Finally, the “thickness” 
instruction specifies the diameter of the cylinders as a percentage of the unit length resulting from “F”. 
The substring “&(-90)>(90)-(90)” orients the turtle to be facing up on the y axis. The next instruction 



“c(12)” specifies a color that is close to that of the stem of a plant. In the first rule, the “!” symbol reduces 
the diameter of the stem by 10%, so the sequence F!F!F!F!F!F!F results in a tapering stem.  

recursion 3  #iterate the rewriting 3 times 
 
switch_yz 1  #switch the y and z axes 
shape 1   #use cylinders for F 
thickness 50  #diameter is 50% of length 
 
#orient the turtle, set the color and start with S (stem) and W (whorl) 
axiom &(-90)>(90)-(90)c(12)SW  
 
# draw the stem with ! causing it to taper by 10% per F  
rule S = F!F!F!F!F!F!F  
 
# establish the whorl with 8 arms 
rule W = L>(45)L>(45)L>(45)L>(45)L>(45)L>(45)L>(45)L  
 
#draw a leaf with two surfaces using an elongated hexagon 
rule L = [&(110)c(4)F[{.+(30)g(.866).-(30)g.-(30)g(.866).-(120) g(.866).-(30)g.-(30)g  
  (.866) g.}]> (180)c(4) {.+(30)g(.866).-(30)g.-(30)g(.866).-(120)g(.866).-(30)g.-

(30)g (.866)g.}] 
 

The symbols for drawing a polygon, {. g. g.} mentioned earlier, are used to create the leaf. Each polygon 
is visible on one side only. So the turtle has to be rolled 180° to create the second surface. Instructions to 
draw polygons or branches or any structure that is repeated are enclosed in [ ] symbols as “branches” in 
an abstract sense, to isolate those instructions from their context. Instructions for a leaf “L” are enclosed 
in [ ] symbols. Similarly, the instructions to create two surfaces of the leaf are also enclosed in [ ] 
symbols. 
 
In Figure 2, we see an example of apical branching, which results in two branches and whorls of leaves. 
 

recursion 3 
switch_yz 1 
shape 1 
thickness 50 
 
# at the top of the stem create two branches on opposite sides 
axiom &(-90)>(90)-(90)c(12)S[BW]>(180)[BW] 
 
rule S = F!F!F!F!F  
 
# incline the branches at 60 degrees 
rule B = &(60)F!F!F 
 
rule W = L>(45)L>(45)L>(45)L>(45)L>(45)L>(45)L>(45)L 
 
rule L = [&(100)c(4)F[{.+(30)g(.866).-(30)g.-(30)g(.866).-(120)g (.866).-(30)g.-

(30)g(.866)g.}]> (180)c(4){.+(30)g(.866).-(30)g.-(30)g(.866).-(120)g(.866).-(30)g.-
(30)g(.866)g.}] 

 



 
Many plant species have lateral meristems that can progress to being lateral branches. In nature it is 
possible to find a variety of lateral branching patterns, including opposite and alternate as well as 
phyllotactic. In the next example (Figure 3), we present a tree with phyllotactic branching. As meristems 
produce branches higher on the trunk, they are separated around the vertical axis by the “golden” angle of 
137.5°. 

 

    

    

   

Figure 3: Phyllotactic 
spiral tree with 

recursions levels 2 
through 12 

 
 

 
recursion 12 
 
switch_yz 1 
shape 1 
thickness 10 
 
axiom &(-90)>(90)-(90)c(12)A 
 
rule A = FBA 
rule B = !>(137.5)[&(45)FA] 

 

In Figure 3 the axiom is A and on each 
iteration A is replaced by a length of trunk or 
branch (F), a branch (B) and A. In turn, B 
produces a branch with an inclination angle 
of 45 and the branches are separated by 
rolling about the vertical axis by 137.5. The 
same pattern, which occurs on the main 
trunk, also occurs on every branch. In this 
model there is no restriction on the level of 
branching. The development of this tree can 
be seen in Figure 3 in which each frame 
represents the result for between 2 and 12 
levels of recursion. 

 
In a process similar to that used for the phyllotactic tree, it is possible to generate a Dandelion-like 
inflorescence. Figure 4 illustrates that process. The initial structure contains 6 axes, which subsequently 
produce four branches and each of those a further four branches. After just six iterations, the structure 
takes on an appearance like a Dandelion inflorescence. Changing lighting effects in VRML environment 
allows for more or less resemblance with a white dandelion from nature (Figure 6). 
 



 
 

 

 

 

 

Figure 4: Generating L-dandelion 

recursion 6 
 
# switch_yz 1 
angle 45 
shape 1 
thickness 5 
 
axiom &(90)+(90)[Q][-(90)Q][-(180)Q][-(270)Q] 
 
rule Q = ["(.7)c-P]["(.7)c^P]["(.7)c+P]["(.7)c&P] 
 
rule P = F["(.7)c-P]["(.7)c^P]["(.7)c+P]["(.7)c&P] 

 
 

When the tree with phyllotactic branching, shown in Figure 3 
has leaves added (Figure 5) it takes on the appearance of a 
real plant. The sequence of T producing U, which produces 
W, which produces FT introduces a delay so that leaves tend 
to be located toward the periphery of the structure. The 
symbol t(-.5) introduces the effect of gravity on curvature of 
branches, while the symbol ~(60) allows random variation in 
yaw, roll and pitch. This improves the match between this 
model and real plants. 

 
recursion 12 
 
axiom &(-90)>(90)-(90)c(12)TA 
 
rule A = FBA 
rule T = U 
rule U = W 
rule W = FT 
 
rule B = !>(137.5)t(-.5)[&(45)F[c(4)~(60)F[L]A] 
 
rule L = [&(100)c(4)F[{.+(30)g(.866).-(30)g.-(30)g(.866).-

(120) g(.866).-(30)g.-(30)g(.866)g.}]>(180)c(4) 
{.+(30) g(.866).-(30)g.-(30)g(.866).-(120)g 
(.866).-(30)g.-(30)g(.866)g.}] 

 

 
 

Figure 5: Tree with phyllotactic branching and ovate leaves. 



 
Artistic License with Plant Architecture 

 

 

 

 

 

Figure 6-9: From a dandelion to 
 a “bushy” structure, and to  

abstract digital “watercolors”. 

 
recursion 6 
angle 45 
shape 1 
thickness 5 
 
axiom &(90)+(90)[Q][-(90)Q][-(180)Q][-(270)Q] 
 
rule Q = ["(.7)c-P]["(.7)c^P]["(.7)c+P]["(.7)c&P] 
 
rule P = F["(.7)c-P]["(.7)c^P]["(.7)c+P]["(.7)c&P] 

 
“Adding” leaves to dandelion structure in Figure 6 
produces a spherical artificial bush (Figure 7), 
details of which appear not to have any organized 
structure.  

 
recursion 6 
no_wait 1       
 
angle 30 
shape 1 
thickness 5 
 
axiom &(90)+(90)[Q][-(90)Q][-(180)Q][-(270)Q] 

[^(90)Q][&(90)Q] 
 
rule Q = ["(.7)c-P]["(.7)c^P]["(.7)c+P]["(.7)c&P] 
 
rule P = A["(.7)c-P]["(.7)c^P]["(.7)c+P]["(.7)c&P] 
 
rule A = FBA 
 
rule B = !>(137.5)t(-.5)[&(45)F[c(4)~(60) 

F[{.+(30)g(.866).-(30)g.-(30)g (.866).-
(120) g(.866).-(30)g.-(30)g(.866)g.}]> 
(180)c {.+(30) g(.866).-(30)g.-(30) 
g(.866).-(120) g(.866).-(30)g.- (30) 
g(.866) g.}]A] 

 
Topiary-like artistic bush (Figure 7) can be observed 
in 3D environment which allows an observer to 
examine it from different angles and experience its 
three-dimensional features, depth and light effects. 
Figures 8 and 9 are authors’ depictions of details 
from the Figure 7, created through play with avatar 
and lighting features of the VRML environment.  
 

 
 



Reflections: Aesthetics of Process and Output of L-systems 
 
The creativity of process and outputs of L-systems may be viewed from multiple perspectives. The first 
may be as a plant enthusiast, who admires the form, patterns, growth and morphogenesis of real plants 
that are emulated by the output from certain L-systems. The second is as someone simply admiring a 
creation because they find it pleasing in itself. In this instance, the output may not fall within the 
constraints that define a plant. A third perspective is that of the mathematician, who finds beauty in the 
elegance of a succinct formulation, which results in a pleasing form or morphological sequence. In the 
case of Prusinkiewicz and Lindenmayer [4], it is the algorithm or process of creation of an interesting 
object and its basis in an elegant piece of “code” that could be regarded as aesthetically pleasing. It has 
mathematical beauty. 
 
Mathematical beauty is inherent in L-systems and their application in a number of ways. The first is that 
the piece of L-system code is short (e.g. an axiom and two production rules that produce the Dandelion-
like inflorescence in Figure 4). There is also beauty in the small number of steps needed to produce an 
aesthetically pleasing object. For example only 6 recursions are needed to produce an object like a 
dandelion-like inflorescence (Figure 4). Another dimension of the beauty of L-systems is that the results 
are surprising, especially in terms of the complexity of the output. The insights that L-systems provide, 
such as the self-similarity or repetition of patterns at different levels of detail, are another form of beauty. 
After seeing examples of L-systems, the realization that an author can easily create new forms, provides 
another form of beauty: the beauty of generalizability. For example, after seeing Figures 5 and 6 and their 
L-systems code, a hybrid form can be produced as in Figure 7 by adding “leaves” to the Dandelion-like 
inflorescence. Further, once the hybrid is generated, its inner form can be explored to artistic effect, 
generating new and exciting images by zooming in or changing the spectral properties of a three-
dimensional lighting environment. Just as you may stand and admire a painting in a gallery for different 
angles the VRML (Virtual Reality Modeling Language) allows you to move in three dimensions relative 
to the object—panning, tilting and zooming—as well as changing the light sources. 
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