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Abstract

In polyphonic music, simultaneous melodic lines, or “voices,” create@aesgce of vertical harmonies or “chords.”
The melodic voices determine mappingsyoice leadingsfrom the notes of one chord to those of the next. While
we have clear intuitions that some voice leadings are smaller than otheligfuitions are not robust enough to
determine a precise “metric” of voice-leading size. Tymoczko (200&)@sed that any voice-leading metric should
be consistent with two principles: (1) small voice leadings move their vaigeshort distances, and (2) small voice
leadings move their voices along non-intersecting paths. We show thatrtied prder imposed on voice leadings by
these constraints is equivalent to the submajorization partial order, atiigygnin 1905 with the economist Lorenz.
We further show how to use submajorization to compare distances betaleand types.” Finally, we highlight
surprising connections between the results discussed in this papercdnhehps in welfare economics.

1. Introduction

Western polyphonic music exhibits two dimensions of musical coherencéicitlates simultaneous melo-
dies, each of which typically moves by short distances in pitch; and it artésuEequences of harmonies,
which typically sound similar to one another. In Western musical notation, tiesdimensions are rep-
resented spatially, with melodies notated horizontally and harmonies notatelxer The challenge in
composing is to design arrays of notes that are coherent in both wayssartte time.

So, for example, music students are often asked to realize a sequehceds as a sequence of simulta-
neous melodic voices or lines. Two possible realizations of the chordgssign C-F-C-G-C are depicted
in figure 1. If the exercise is done well, as on the left, the notes assigneditalimal voices form pleasing
melodies. Furthermore, the individual voices will tend to avoid “voice éngsS in which a lower voice
moves above a higher voiédf voices constantly make great leaps in pitch, as on the right, we hear the mu-
sic as choppy or disjointed, and it can be hard to distinguish the individuabiodines. Such realizations
also tend to be difficult for musicians to sing or play.

The practice of devising simultaneous melodies that form pleasing choogssions is called counter-
point. A passage of contrapuntal music can be analyzed as a seriesphgsr voice leadings, between
the pitches in adjacent chords. There is a sense in which voice leadimgsdsred by size: the mapping
between the first two chords on the left in figure 1 is “smaller” than the mapgtvgeen the first two chords
on the right, because each voice moves a smaller distance. Unfortunatelytuitions do not tell us how
to compare two arbitrary voice leadings, let alone assign a specific nummeastring” their size. Should
we compute the aggregate distance traveled by the voices? Should we \aesjgheaps more than small
ones? Or should we use an entirely different metric?

1Anyone who has studied beginning music theory also remembers thataheseveral other constraints: for example, the
prohibition against parallel fifths or octaves. However, these rulely appy to some styles of Western music. We are considering
more general principles common to a wider range of styles.
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Figure 1: Two voice leadings associated with the chord progression C-F-C-G-C.

Music theorists have not devoted much attention to these questions; inseatydically choose some
particular metric without attempting to justify it. In this paper, we follow a differapproach, stating
conditions that any “reasonable” method of comparing voice leadings ratistys These conditions turn
out to be quite restrictive; for example, we show that all reasonable meatyzieg about the minimal voice
leadings between two major or two minor triads and between two dominant or tirdiménished sevenths.
In addition, we develop an algorithm for comparing classes of voice leadiatyveen “chord types” that
goes some way toward modeling our intuitions about their similarity.

Surprisingly, the topics we discuss are similar to topics arising in welfareoecios. There are three
reasons for this. First, music and economics both involve unordered toamtieof real numbers: just as a
chord can be represented as an unordered collection of pitches) #weddistribution of wealth in a society
can be represented as a multiset of individuals’ assets. Second, in b&ithand economics these unordered
collections can be more or less close to one another: it can take more ocdessrec “work” to transform
one wealth distribution into another, just as it can take more or less musiced™teamove from one chord
to another. And third, both music theorists and economists confront uimtgrédout just how to measure
the “distance” between unordered collections. In both fields, thergfasdanteresting to ask whether there
are constraints shared by all reasonable metrics.

2. Basic terminology

Listeners comprehend music by abstracting from information—for exampgjrig the ordered pitch se-
quences (C4, E4, G2pnd (E2, G4, C5) to be instances of the same musical object, the C major chord
In this section we summarize recent work by Callender [2], Tymoczkaa[@], Callender, Quinn, and Ty-
moczko [3] that uses quotient spaces to model this process of abstrdatiridual objects such as notes
and chords can be represented as points in quotient spaces formeahtifyidg or “gluing together” points

in R". Sequences of musical objects, such as voice leadings and chordg®iogs, can be represented as
line segments or pairs of points in these spaces.

Pitchesare real numbers representing the logarithm of a note’s fundamergakfiey. Conforming to
the MIDI standard, we set middle C equal to 60 and the size of the octawa ®qli2. Thus pitch=
69 + 12 log, (frequency440). (Note that pitch space is continuous, and not limited to the discrete pitches of
Western equal temperament.) A musicbjectis an ordered tuple of pitches: (C4, E4, G4), or (60, 64, 67),
is the object whose first element is middle C, and whose second and thirdnédeane the E and G above
that. Progressionsre ordered tuples of objects. Thus (C4, E4,-G44, F4, A4) is the progression whose
first object is (C4, E4, G4) and whose second is (C4, F4, A4).

Musicians classify objects and progressions using the f¥P TIC symmetries”: octave displacement

2In “scientific pitch notation” pitches are indicated by combining a letter nameanitinteger indicating the pitch’s octave. C4
is middle C, while C5 and C3 are an octave above and below C4, respgc@aaves run from C to C, so that B3 is a semitone
below CA4.



(O), which identifies (C4, E5) with (C2, E6); permutatioR)( which identifies (C4, E5, G4) with (E5,
C4, G4), transposition or translatiol’), which identifies (C4, E4) with (G4, B4); inversion or reflection
(I), which identifies (C4, E4, G4) with (G4,b&, C4); and cardinality equivalenc€}, which identifies
(C4, C4, E4) with (C4, E4). These operations are described in tablevéry Eombination of the four
OPTI operations generates a quotient spac®®f The quotients byP andI are orbifolds, since they
contain singularities. Th€ operation generates an infinite dimensional “Ran space” that is quite Hifficu
to visualize.

Symmetry Geometrical space
None R"

Octave x~ox+12i, e T™ (n-torus)

Rnfl or Tnfl
Transposition z~1x+ce(l, ., 1), ceR (Orthogonal projection creates
a simplicial coordinate system

Permutation r~po(x), oc€S§, add/S,
. Add /ZQ [OI' /(Sn X ZQ)
Inversion T if in conjunction withP]
Cardinality | (...,x;, %it1,...) ~c (..., 2, T, it1,...) | Infinite dimensional “Ran space”

Table 1: The five principal symmetries in Western music theory.

There are two ways to apply tH@PTIC operations to progressions. L&trefer to a collection of
OPTIC operations. For musical objedts, . . ., O, the progressio®); — Os — ... — Oy is globally
S-equivalent tos(O1) — s(O2) — ... — s(Oy) foranysin S. The progressiof); — Oy — ... — Oy IS
locally S-equivalent tos; (O1) — s2(02) — ... — si(Oy) for s; in S. Thus, global equivalence requires
that a single operation transform each object in the first progression into the correspondijegtan the
second; local equivalence requires only thaimeoperation inS relate corresponding objects in the two
progressions.

A large number of familiar musical terms can be described using this formalismitcA classis an
equivalence class of pitches under octave displacen@ntRitch classes are points on the cirii¢127Z,
and can be represented by numbers in the rafgeé2). Integer pitch classe#(127Z) make up the chro-
matic scale ofwelve-tone equal temperamewnith O representing the pitch class C, 1 representifigp@d
so on. Achordis an equivalence class of objects under octave transposition and permutatiother
words, a multisétof pitch classes. For example, the multié€t E, G}, or {0, 4, 7}, represents the C major
chord. Achord typeor “transpositional set class” is an equivalence class of objects UnB&r. Familiar
terms like “major chord,” “minor chord,” and “major scale” refer to chorgesg.

A chord progressior-the kind of thing one sees in a guitar fakebook—is a sequence of civitiasut
any implied mapping between the chords’ notes. Chord progressionguavalence classes of progressions
under local applications o® andP. They are represented geometrically by ordered pairs of points in
T" /S, then-torus modulo the symmetric group of orderBy contrast, avoice leadings an equivalence
class of progressions under glotalandP, represented geometrically by the imageTi/S,,, of a line

segment irR”™. Voice leadings show how the notes of one chord “move” to those of andtbiee leadings

are notated (C, E, GT)IO—I(B E, Gf). This indicates that the C in the first chord moves down by semitone,

the E stays fixed, and the G moves up by semitone. We omit the numbers abavethevhen they all lie
in the rangg —6, 6].

3Representing chords as multisets (rather than sets), though somewisaalis musically meaningful—for example, it is
common for two voices in four-part harmony to double a pitch class.



3. Measuring voice leadings and the distribution constraint

Let (1,29, ..., xn)m»(yl,yg, ...,yn) be avoice leading. Itdisplacement multisés the multiset
of distances moved by each voicfd,|,...,|d,|}. We are interested in measuring the voice leading’s

“size”—the amount of musical “work” done in moving from the first chordthe second. We assume
that the size of the voice leading depends only on the voice leading’s dispéant multiset, and that it
is nondecreasing in each of the multiset's elements: that is, the voice leadindisptacement multiset
{ld1]| + |¢|,|d2l,...,|dn|} is at least as large as that with displacement mulfigét|, |da|, ..., |d,.|} (see
figure 2, left).

What are the minimal constraints on measures of voice-leading size? Terathssvquestion, DT [8]
proposed the “distribution constraint.” It says that the composer’s asmatling voice crossings should be
compatible with the aim of minimizing voice-leading size, however we measfir8ée figure 2, right, for
an illustration. The distribution constraint imposes a partial order on multiseisrofegative real numbers
that may be expressed in a number of different ways.

. f .
1. is not larger =4 2. is not larger %

Figure 2: The distribution constraint.
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In what follows,z(; denotes théth largest element of the multisgt, ..., z,}.

Theorem 1 Let < be a partial order on the space afelement multisets of nonnegative real numbers that
is nondecreasing in each of its elements. The following definitiorsavé equivalent:

1. The Dalton transfer principleLet {z1,...,z,} be a multiset of nonnegative real numbers. For any
nonnegative: and any pair of indicesi, j) wherex; < z;,
{1, ozt ooz, an ) <z, @,z e T ) Q)
2. The no crossings principlé&or any multisets of real numbefs,, ..., a,} and{b,...,b,},
{‘bm — am|, ceey ‘b[n} — a[n]|} <Alb1 —ail,. .., |bn — anl}.

In other words, there is a minimal length voice leadidg- B between any two multisets of pitches
such that ifa; < a; in the source, theh; < b; in the target.

3. The weakened triangle inequalityhere is a minimal-length path between any two point® S,
or T"/S,, that does not pass through a singularity.

4. Submajorization.Let X = {z1,...,2,} andY = {y,...,y,} be multisets of nonnegative real
numbers. ThelX <Y if and only if
J J
=1 =1

“If the aim of avoiding voice-crossings were incompatible with the aim of miritgizoice leading size, we would expect to
see two distinct sets of voice-leading preferences: when voices Vosetogether, the goal of avoiding crossings would trump the
goal of minimizing voice-leading size; when voices were far apart,simgs would pose no danger, and minimal voice leadings
could be used freely. However, composers’ voice leading prefesedo not typically depend on how far apart musical voices are;
therefore it is reasonable to postulate that the goal of avoiding crogsikegmpatible with the goal of minimizing voice-leading
size.



DT [8] proved that the Dalton transfer principle and the no crossingsipta are equivalent. The
weakened triangle inequality is a restatement of the no crossings principkelantjuage of geometry. The
final condition is better known as the definition of the submajorization partror

Definition 1 Let X andY be multisets of nonnegative real numbers. We sayMtaitbmajorizesy (written
X < Y)if and only if inequality/(2) holds.

Submaijorization is a weakened form of the majorization partial order, whighires equality in (2) when
j = n. The equivalence of (1) and (2) when a partial order is increasingah ef its elements follows from
lemmas 1 and 2 in Hardy, Littlewood, andlipa [5]. Henceforth, we will use the symbel, to indicate the
partial order of theorem 1.

Majorization originated with the economist Lorenz [6], who reasoned thatdavealth away from a
rich person and giving it to a poorer person should not make a sociatyaliesthis is the so-calleBalton
transfer principle It imposes a partial order on multisets of nonnegative numbers repiresérdividual
incomes or assets. Note that the condition that the partial order be neadigy in each of its elements
does not apply, because the total wealth in the society remains constartpleeconomic applications
more fully in section 6.

Many have proposed measures—that is, functions from the spaceptdatimment multisets to the non-
negative reals—for voice-leading size (see [8]). We say thaR’} — R is an “acceptable” voice-leading
metric if and only if f(X) < f(Y) wheneverX <, Y in general, any method of comparing (but not
necessarily measuring) voice leadings that respects the submajorizat&smgris “acceptable.” Examples
include LP-norms forp > 1 and reverse lexicographic order.

3.1. The geometry of submajorization. We develop the geometry of submajorizatioriiwith a view
towards comparing distances in the geometrical spaces described in @dqinwhat follows, let;(X)

denote the sum of th¢ largest elements of a multiséf (that is,>;(X) = > 7_; z};). In addition, for a
vectorv = {vy,...,v,} € R", let{|vi|} = {|vi],...,|vn|}

Definition 2 Thesubmajorization balbf a multisetX of nonnegative real numbers is the set of vectors
such that{|v;|} <y X. TheX;-ball of X is the set of vectors in R™ such that:;({|v;|}) < 3;(X).

The submajorization ball is the intersectionXf-balls for1 < j < n. In general, &;-ball is a set of
simultaneous solutions to a system of linear inequalities of the tarm+ ... + e,v, < ¥;(X), where
eache; is chosen from the s€0, 1, —1}, and exactlyj of thee; are nonzero. (Note that, (X) = L*>(X)
andX, (X) = L'(X).) Each;-ball is a convex polytope that is invariant under the group of signed per
mutations. For example, iR3, the ¥;-ball is a filled cube, thé&,-ball is a filled rhombic dodecahedron,
and theX3-ball is a filled octahedron. The intersection of fig-balls for1 < j < n—that is, the subma-
jorization ball—is a convex polytope whose vertices are the signed permutafitreselements oX'. The

set of vectorar such that{|u;|} submajorizesX is the complement (ifR™) of the union of the interiors of
theX;-balls for1 < j < n. If a vectory does not lie in either this complement or in the submajorization
ball, {|y;|} and X are not comparable.

Since the orbifolds[™ /S,, representing the spaces of chords locally reser®blexcept at their singu-
larities, the submajorization ball gives us an idea of what it means for are th be “closer” than another
to a given chord. Letd and B be chords ifil” /S,, sufficiently far from any singularity of the orbifold, and
let D be the displacement multiset of a minimal voice leading fi8rio A. The set of chords closer thah
to A is congruent to the submajorization ballfin R™. Figure 3 (left) shows the polytope—in this case an
octagon—containing the intervals (two-voice chords) “closer” than OFCF situated in two-dimensional
chord spac&™/S,. Intervals lying in the exterior of the star are “farther” from CF thart3rom CF. At
right, the same relationship is depicted for the intervals DF and CF.
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Figure 3: Submajorization polytopes Iii* /S,, (Mdbius strip).

4. Measuring distance between chord types

A chord typeor “transpositional set class” is an equivalence class-tafples of pitches under octave dis-
placement, permutation, and transposition. Chord types are equivalassesof unordered sets of points
on the pitch circle modulo rotation. In order to capture the voice-leadingilplitiss of chord types,
we return to the orbifold models introduced in section 2. The space of dypesT"!/S,,, called
transposition-class spacer T-space is the projection of the space of chori8/S,, onto the zero-sum
plane (see [2, 8, 3]). Points in this space represent chord typess rgttesent voice leadings modulo
the individual transposition of either chord; they are the projections etthd line segments IR" onto
T-space.

We have a sense that some chord types offer fairly similar voice-leadssifgiidies and that others offer
very different choices: major chords iK€, E, G} seem very similar to augmented triads I, E, G},
and not so similar to clusters likgC, Ci, D}. Any measure of voice-leading size provides some measure
of distance between chord types: let the distance between two chordogples size of the minimal voice
leading between chords belonging to those types. However, as in oussiise of submajorization, we
would like to compare distances h-class space without committing ourselves to a particular metric. We
use the partial order that the distribution constraint imposes on displaceméisets to define a “distance”
between chords modulo transposition of either chord. This allows us to cempiae leading possibilities
between chord types. As in our discussion of submajorization, we beglafinyng a method of comparing
distances (think voice leadings) &r*/T ~ R"~!, and then use the fact that this space locally resembles
T-class space.

Definition 3 Letv be andw be vectors inR™. We say thatv is T-smallerthanv if, for any real number
x, there exists a real numbersuch that

{lwi +yl} <w {lvi + [} (3)

In other wordsw is T-smaller tharv if and only if the se{w+y(1,...,1)|y € R"} has a representative
that lies in the intersection of the submajorization balls{jof + z|} for x € R. Therefore,w is T-
smaller thanv if the projection ofw to the zero-sum plane lies in the projection of the intersection of the
submajorization balls of|v; + x|} onto the zero-sum plane.

Definition 3 does not tell us how to determine an ordering baséb-emallness in finite time. Theorem 2
shows that it suffices to fing in inequality (3) for finitely manyz, thus permitting a polynomial-time
algorithm forT-closeness.

Theorem 2 Letv be a vector irR", let.S be the set of point§ = {(1/2)(v; +v;) : 1 <i < j <n},and



let M C S be the sef = {(1/2)(vy) +vjp—it1)) : 1 < < [n/2]}. LetS” be the set of elements fthat
are no less thamin()) and no greater thamax (M ). The vectow is T-smaller thanv if and only if for
eachs in S’ there exists @ such that

{lwi +yl} <w {[vi = s[}- (4)
Corollary 1 If v is symmetric about a value, then{|v; — m|} is minimal.

We now develop a notion of distance in transposition-class spacd l(et) represent the transposition
of chord A by x pitches, and letd] = {T,(A) : x € R} represent the chord type df.

Definition 4 Let A, B, andC' be chords. We say th@f'] is T-closerto [A] than [B] is to [A] if, for every
voice leading fromA4 to some transpositiofl',.(B), there exists som&-smaller voice leading from to a
transposition ofC'.

Example.We claim that the chord typg0, 4, 7}] of major triads isT-closer to the class of augmented
triads[{0, 4, 8}] than the clustel{ 0, 1, 2}] is to the class of augmented triads. The voice leadling+x, 2+
x)—(0, 4, 8) has displacement multiséltz|, | — 3|, |= — 6|} and the voice leadingy, 4+y, 7+vy)—(0, 4, 8)
has displacement multiséty|, |y|, |y — 1|}. We must show that for every there exists & such that
{|z|, |z — 3], |z — 6]} submajorizeg|y|, |y|, |y — 1|}. In this case, setting equal to zero suffices for atl.

A voice leading isinversionally symmetridf the multiset of directed distances traveled by each of its
voices is symmetric about some value Corollary 1 implies that all metrics agree on how to minimize an
inversionally symmetric voice leading. Therefore, all metrics agree abeunthimal voice leadings be-
tween two perfect fifths, two major or two minor triads, and two dominant or tabdiminished sevenths.
These are among the most common voice leadings we find in Western tonal music.

If [A] and[B] are chord types sufficiently far from the boundary of the orbifold, #teo$ chord types
T-closer thar{B] to [A] is a polytope centered &t in OPT space; it is congruent to the projection of the
intersection of the submajorization balls for minimal voice leadirgghe form A—T,.(B). In trichordal
OPT space, these polytopes are the intersections of two hexagons, ond Bffateom the other.

5. Evenness

In this section, we develop an applicationBfcloseness to measuring the “evenness” of a chord type.
For anyn, we refer to the chord0,12/n,24/n,...,12(n — 1)/n} as theperfectly even chordts chord
type consists of the chords that divide the octave inemual parts.

Definition 5 The chord typdA] is more everthan the chord typeB] if [A] is T-closer than[B] to the
perfectly even chord type.

Figure 4 shows the evenness ordering on the orbif8l{{ Sz x Z) representing trichords modulo inver-
sion. Arrows indicate contours along whi@hcloseness to the perfectly even chord type (augmented triads)
increases.T-closeness imposes a univocal ordering on trichords in twelve-tore egaperament, with
the next-most-even chord type beif@, 3, 7}|, which represents both the major and minor triads. However,
outside of 12-tet there exist incomparable trichords (for exanifle2.2,4.3}] and[{0, 1,5}]). We depict
the T-closeness tetrachord ordering on the orbifély (Sy x Z) in figure/5, left; a portion of the same
partial ordering is abstracted in the lattice at right. The diminished seVéntB, 6,9}] is perfectly even,

There is a slight subtlety here. Since we are also dealing with the quotiertiopeO, there may not be a unique class
of crossing-free voice leadings between chord typsand [B] that contains all the minimal crossing-free voice leadings from
instances ofA] to instances of B]. For example, letl = {0,0,0,0} andB = {0, 4,5,9}. There are two classes of voice leadings
from A to B that contain minimal voice leading§d, 0, 0, 0)—T.(0, 4,5,9) and(0, 0,0, 0)—T(0, 1,5, 8).



and the next-most-even chord typg{s, 2, 5, 8}], which includes both the dominant seventh and the half-
diminished seventh. In contrast to the situation with trichords, the evenméssng on 12-tet tetrachords
is not univocal.
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There exist incomparable

12-tet tetrachords 0268

(e.g. 0157 and 0147). 0358
t

0158
0257
0248
AR

0157

0006 014 j’ \ 0247
t 0348
0146~ 01167

0137

0347
Multisets lie on the \gigg/
boundary of the orbifold.
0237
. 0136
0000 gig: "
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5.1. Maximally even sets. Clough and Douthett [4] define thmaximally evem-note chordas an ap-
proximation of the perfectly even chordintet: {0, |k/n], |2k/n],..., |k(n—1)/n]} (the octave has size
k). This definition can be understood in terms of voice leading. Since thestdateger to a real number
x is given by|z + 1/2], Clough and Douthett’s algorithm maps each note of a perfectly even thtine
nearest integer-valued pitch class. The collection of distafjees |z + 1/2]|}, wherez ranges over the
notes of the perfectly even chord, determines the size of the voice ledtfotjows from the requirement
that any acceptable method of comparing voice leadings be nondecreasiach of its elements that no




other voice leading to an integer-valued pitch class set can be smaller. eft@satjzes to our definition of
evenness and only makes use of intrinsic features of pitch-class sets.

In later work, Block and Douthett [1] propose a general definition @&neess. They represent chord
types by sets of points on the unit circle; the “evenness” of a chord tgpale the sum of the Euclidean
lengths of then(n — 1)/2 line segments between these points (so, for example, a semitone contributes
2sin(7/12) ~ 0.52 and a tritone contribute®). Using this measure, the perfectly even chord is indeed
maximal, unison is minimal, and the maximally even chord is the most even among eqomgarésl chords.
Block and Douthett’'s measure agrees with our evenness orderingdiactiose to the perfectly even chord;
however, there is some disagreement for less even chords. To usegtieslef line segments between points
on the unit circle seems arbitrary; in the endnotes to their paper [1, pth&d] provide more flexibility by
permitting other choices of weights for distances between notes in a cimorthey propose a set of general
constraints on the choice of an evenness measure. Our evennassgbdsed oril'-closeness satisfies
these constraints.

6. Applications to economics

As noted earlier, there is a striking connection between the problem of nrggsvice-leading size and
problems considered in welfare economics. An individual's wealth or inccamebe measured as a real
number, using units of dollars or utility (or log-dollars or log-utility). PointsRf can represent the wealth
(or income) of groups of individuals. Thys;,...,z,) indicates that person number one hasdollars,
person number two has dollars, and so on.

Like music theorists, economists are interested in quotieri®'ofl he spac®” /S,, results from a basic
principle of nondiscrimination or “anonymization”: what is important to econaniscthe distribution of
wealth in society, not which individuals have which net worths; hencedigteabutions (3, 2) and (2, 3) are
identical. Similarly, if we measure wealth in log-dollars, then poin®Rm! /S, can represent anonymized
net worths modulo inflation. Here, the points (3, 2) and (4, 3) are elgmiyssince inflation, represented by
addition in log-income space, transforms one into the other. The musicaltimper of octave equivalence
and inversion have no natural analogue in economics.

Points inR"™/S,, can be callecstates they are the economic analogues to multisets of pitches. Points
in R"~1/S,, can be callednflation-adjusted stateshey are the analogues to transpositional set-classes
of multisets of pitches. The economic analogue to a voice leading might be catleghge: a mapping
from one state to another, showing what happens to individual asdats. tiie changés, 2,4)—(2, 3,4)
indicates that the individual who had 3 units of wealth loses one unit, theiddivwho had 2 units of
wealth gains one unit, and nothing happens to the individual with 4 units.gélsaran result from transfers
between individuals, though they need not: the chgBg2)—(2, 2) might result from an individual losing
or destroying a unit of wealth.

Both musicians and economists face significant uncertainty about how taireedistances in their
guotient spaces. We have proposed that the distribution constraiesegps a reasonable minimal constraint
on musical measures of voice-leading size. Might it be the case that iegisgsents a reasonable constraint
on changes in economic states?

We suggest that it may be. The “no crossings principle” of theoriem Isdtséethere is a minimal change
between states that does not disturb the order of individuals by net.wartither words, there is always
a minimal-size change between any two states that satisfies the following condi#eme is richer than
Bob in the initial state, then Anne is at least as rich as Bob in the final statm &neconomic standpoint,
this is an extremely attractive assumption, as it ensures that there will abeagsminimally disruptive
redistribution scheme that does not provide incentives to abandon m@feyassume that in general an
ideal redistributive policy should move from an initial distribution to a “targestribution along a minimal-



length path—minimizing the amount of economic “work” required to get betweeivib states.) Suppose
the condition were violated: Alice would have a pre-redistribution incentiteatle economic places with
Bob, giving him the difference between their net assets. But Bob wad ho inclination to accept Alice’s
gift—her excess money would be a “hot potato” that neither individualte@nAs a result, there would be
severe conflicts between the goal of minimizing economic “work” and thegfqabviding individuals with

a reason to keep their money.

The music-theoretical problem of measuring gwennessf chords is closely related to the economic
problem of measuringnequality In section 5, we proposed measuring evenness using the size of the
smallest voice leading to any chord that divides the octave perfectly evémlyhe same way, we can
measure the inequality of an income distribution using the size of the smallegfect@ma perfectly equal
distribution of wealth. (Note that economic equality is analogous to musicakunegs: a perfectly even
distribution of wealth, like{4, 4, 4}, is like a perfectlyuneverchord such a$E, E, E}, which is maximally
distant from the perfectly even chord.) In doing so, we make a signifitdrture from economic tradition.
Economists use submajorization to compstaes:the state{6, 6, 2, 2 submajorized5, 5, 3, 3, and is
therefore considered to be more unequal. We propose using subm#orivameasurehangedetween
states: we say thdb, 6, 2, 2 is more unequal thafb, 5, 3, 3 because it ifarther from the nearest equal
division according to the submajorization partial ordefhat is, the minimal change frof®, 6, 2, 2 to
the nearest equal division point(i§, 6, 2, 2)—(4, 4,4, 4) which has displacement multisg2, 2, 2, 2. By
contrast, the minimal change frofs, 5, 3, 3 to a point of equal division i$5, 5, 3, 3)—(4, 4, 4, 4), which
has displacement multisét, 1, 1, 3. Itis becaus€?2, 2, 2, 2 submajorizeq1, 1, 1, 1 that we consider
{6, 6, 2, 2 to be more unequal th&®, 5, 3, 3.

We stress that our thoughts here are preliminary: our goal here is simpbjrtictp an interesting formal
analogy between problems in music theory and problems in economics. Withéstearalogy is truly useful,
or merely an interesting curiosity, remains a matter for further inquiry.
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