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Abstract

In polyphonic music, simultaneous melodic lines, or “voices,” create a sequence of vertical harmonies or “chords.”
The melodic voices determine mappings, orvoice leadings, from the notes of one chord to those of the next. While
we have clear intuitions that some voice leadings are smaller than others, our intuitions are not robust enough to
determine a precise “metric” of voice-leading size. Tymoczko (2006) proposed that any voice-leading metric should
be consistent with two principles: (1) small voice leadings move their voicesby short distances, and (2) small voice
leadings move their voices along non-intersecting paths. We show that the partial order imposed on voice leadings by
these constraints is equivalent to the submajorization partial order, originating in 1905 with the economist Lorenz.
We further show how to use submajorization to compare distances between“chord types.” Finally, we highlight
surprising connections between the results discussed in this paper and problems in welfare economics.

1. Introduction

Western polyphonic music exhibits two dimensions of musical coherence: it articulates simultaneous melo-
dies, each of which typically moves by short distances in pitch; and it articulates sequences of harmonies,
which typically sound similar to one another. In Western musical notation, thesetwo dimensions are rep-
resented spatially, with melodies notated horizontally and harmonies notated vertically. The challenge in
composing is to design arrays of notes that are coherent in both ways at the same time.

So, for example, music students are often asked to realize a sequence of chords as a sequence of simulta-
neous melodic voices or lines. Two possible realizations of the chord progression C-F-C-G-C are depicted
in figure 1. If the exercise is done well, as on the left, the notes assigned to individual voices form pleasing
melodies. Furthermore, the individual voices will tend to avoid “voice crossings” in which a lower voice
moves above a higher voice.1 If voices constantly make great leaps in pitch, as on the right, we hear the mu-
sic as choppy or disjointed, and it can be hard to distinguish the individual melodic lines. Such realizations
also tend to be difficult for musicians to sing or play.

The practice of devising simultaneous melodies that form pleasing chord-successions is called counter-
point. A passage of contrapuntal music can be analyzed as a series of mappings, or voice leadings, between
the pitches in adjacent chords. There is a sense in which voice leadings can ordered by size: the mapping
between the first two chords on the left in figure 1 is “smaller” than the mapping between the first two chords
on the right, because each voice moves a smaller distance. Unfortunately, our intuitions do not tell us how
to compare two arbitrary voice leadings, let alone assign a specific number “measuring” their size. Should
we compute the aggregate distance traveled by the voices? Should we weightlarge leaps more than small
ones? Or should we use an entirely different metric?

1Anyone who has studied beginning music theory also remembers that there are several other constraints: for example, the
prohibition against parallel fifths or octaves. However, these rules apply only to some styles of Western music. We are considering
more general principles common to a wider range of styles.
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Figure 1: Two voice leadings associated with the chord progression C-F-C-G-C.

Music theorists have not devoted much attention to these questions; instead, they typically choose some
particular metric without attempting to justify it. In this paper, we follow a differentapproach, stating
conditions that any “reasonable” method of comparing voice leadings must satisfy. These conditions turn
out to be quite restrictive; for example, we show that all reasonable metricsagree about the minimal voice
leadings between two major or two minor triads and between two dominant or two half-diminished sevenths.
In addition, we develop an algorithm for comparing classes of voice leadings between “chord types” that
goes some way toward modeling our intuitions about their similarity.

Surprisingly, the topics we discuss are similar to topics arising in welfare economics. There are three
reasons for this. First, music and economics both involve unordered collections of real numbers: just as a
chord can be represented as an unordered collection of pitches, so can the distribution of wealth in a society
can be represented as a multiset of individuals’ assets. Second, in both music and economics these unordered
collections can be more or less close to one another: it can take more or less economic “work” to transform
one wealth distribution into another, just as it can take more or less musical “work” to move from one chord
to another. And third, both music theorists and economists confront uncertainty about just how to measure
the “distance” between unordered collections. In both fields, therefore, it is interesting to ask whether there
are constraints shared by all reasonable metrics.

2. Basic terminology

Listeners comprehend music by abstracting from information—for example, treating the ordered pitch se-
quences (C4, E4, G4)2 and (E2, G4, C5) to be instances of the same musical object, the C major chord.
In this section we summarize recent work by Callender [2], Tymoczko [8],and Callender, Quinn, and Ty-
moczko [3] that uses quotient spaces to model this process of abstraction. Individual objects such as notes
and chords can be represented as points in quotient spaces formed by identifying or “gluing together” points
in R

n. Sequences of musical objects, such as voice leadings and chord progressions, can be represented as
line segments or pairs of points in these spaces.

Pitchesare real numbers representing the logarithm of a note’s fundamental frequency. Conforming to
the MIDI standard, we set middle C equal to 60 and the size of the octave equal to 12. Thus pitch=
69+12 log2(frequency/440). (Note that pitch space is continuous, and not limited to the discrete pitches of
Western equal temperament.) A musicalobjectis an ordered tuple of pitches: (C4, E4, G4), or (60, 64, 67),
is the object whose first element is middle C, and whose second and third elements are the E and G above
that.Progressionsare ordered tuples of objects. Thus (C4, E4, G4)→(C4, F4, A4) is the progression whose
first object is (C4, E4, G4) and whose second is (C4, F4, A4).

Musicians classify objects and progressions using the five “OPTIC symmetries”: octave displacement

2In “scientific pitch notation” pitches are indicated by combining a letter name withan integer indicating the pitch’s octave. C4
is middle C, while C5 and C3 are an octave above and below C4, respectively. Octaves run from C to C, so that B3 is a semitone
below C4.



(O), which identifies (C4, E5) with (C2, E6); permutation (P), which identifies (C4, E5, G4) with (E5,
C4, G4), transposition or translation (T), which identifies (C4, E4) with (G4, B4); inversion or reflection
(I), which identifies (C4, E4, G4) with (G4, E♭4, C4); and cardinality equivalence (C), which identifies
(C4, C4, E4) with (C4, E4). These operations are described in table 1. Every combination of the four
OPTI operations generates a quotient space ofR

n. The quotients byP andI are orbifolds, since they
contain singularities. TheC operation generates an infinite dimensional “Ran space” that is quite difficult
to visualize.

Symmetry Geometrical space
None R

n

Octave x ∼O x + 12i, i ∈ Z
n

T
n (n-torus)

Transposition x ∼I x + c(1, . . . , 1), c ∈ R

R
n−1 or T

n−1

(Orthogonal projection creates
a simplicial coordinate system)

Permutation x ∼P σ(x), σ ∈ Sn add/Sn

Inversion x ∼I −x
Add /Z2 [or /(Sn × Z2)
if in conjunction withP]

Cardinality (. . . , xi, xi+1, . . .) ∼C (. . . , xi, xi, xi+1, . . .) Infinite dimensional “Ran space”

Table 1: The five principal symmetries in Western music theory.

There are two ways to apply theOPTIC operations to progressions. LetS refer to a collection of
OPTIC operations. For musical objectsO1, . . . , Ok, the progressionO1 → O2 → . . . → Ok is globally
S-equivalent tos(O1) → s(O2) → . . . → s(Ok) for anys in S. The progressionO1 → O2 → . . . → Ok is
locally S-equivalent tos1(O1) → s2(O2) → . . . → sk(Ok) for si in S. Thus, global equivalence requires
that a single operations transform each object in the first progression into the corresponding object in the
second; local equivalence requires only thatsomeoperation inS relate corresponding objects in the two
progressions.

A large number of familiar musical terms can be described using this formalism. Apitch classis an
equivalence class of pitches under octave displacement (O). Pitch classes are points on the circleR/12Z,
and can be represented by numbers in the range[0, 12). Integer pitch classes (Z/12Z) make up the chro-
matic scale oftwelve-tone equal temperament, with 0 representing the pitch class C, 1 representing C♯, and
so on. Achord is an equivalence class of objects under octave transposition and permutation—in other
words, a multiset3 of pitch classes. For example, the multiset{C, E, G}, or {0, 4, 7}, represents the C major
chord. Achord typeor “transpositional set class” is an equivalence class of objects underOPT. Familiar
terms like “major chord,” “minor chord,” and “major scale” refer to chord types.

A chord progression—the kind of thing one sees in a guitar fakebook—is a sequence of chordswithout
any implied mapping between the chords’ notes. Chord progressions are equivalence classes of progressions
under local applications ofO andP. They are represented geometrically by ordered pairs of points in
T

n/Sn, then-torus modulo the symmetric group of ordern. By contrast, avoice leadingis an equivalence
class of progressions under globalO andP, represented geometrically by the image, inT

n/Sn, of a line
segment inRn. Voice leadings show how the notes of one chord “move” to those of another. Voice leadings

are notated (C, E, G)
−1,0,1−−−−→(B, E, G♯). This indicates that the C in the first chord moves down by semitone,

the E stays fixed, and the G moves up by semitone. We omit the numbers above thearrow when they all lie
in the range(−6, 6].

3Representing chords as multisets (rather than sets), though somewhat unusual,is musically meaningful—for example, it is
common for two voices in four-part harmony to double a pitch class.



3. Measuring voice leadings and the distribution constraint

Let (x1, x2, . . . , xn)
d1,d2,...,dn−−−−−−→(y1, y2, . . . , yn) be a voice leading. Itsdisplacement multisetis the multiset

of distances moved by each voice,{|d1|, . . . , |dn|}. We are interested in measuring the voice leading’s
“size”—the amount of musical “work” done in moving from the first chord tothe second. We assume
that the size of the voice leading depends only on the voice leading’s displacement multiset, and that it
is nondecreasing in each of the multiset’s elements: that is, the voice leading withdisplacement multiset
{|d1| + |c|, |d2|, . . . , |dn|} is at least as large as that with displacement multiset{|d1|, |d2|, . . . , |dn|} (see
figure 2, left).

What are the minimal constraints on measures of voice-leading size? To answer this question, DT [8]
proposed the “distribution constraint.” It says that the composer’s aim ofavoiding voice crossings should be
compatible with the aim of minimizing voice-leading size, however we measure it.4 See figure 2, right, for
an illustration. The distribution constraint imposes a partial order on multisets ofnonnegative real numbers
that may be expressed in a number of different ways.

1. & www www is not larger
than

& www www
2. & www www is not larger

than
& www www

Figure 2: The distribution constraint.

In what follows,x[i] denotes theith largest element of the multiset{x1, . . . , xn}.

Theorem 1 Let≤ be a partial order on the space ofn-element multisets of nonnegative real numbers that
is nondecreasing in each of its elements. The following definitions of≤ are equivalent:

1. The Dalton transfer principle.Let {x1, . . . , xn} be a multiset of nonnegative real numbers. For any
nonnegativec and any pair of indices(i, j) wherexi ≤ xj ,

{x1, . . . , xi + c, . . . , xj , . . . , xn} ≤ {x1, . . . , xi, . . . , xj + c, . . . , xn}. (1)

2. The no crossings principle.For any multisets of real numbers{a1, . . . , an} and{b1, . . . , bn},

{|b[1] − a[1]|, . . . , |b[n] − a[n]|} ≤ {|b1 − a1|, . . . , |bn − an|}.
In other words, there is a minimal length voice leadingA→B between any two multisets of pitches
such that ifai < aj in the source, thenbi ≤ bj in the target.

3. The weakened triangle inequality.There is a minimal-length path between any two points inR
n/Sn

or T
n/Sn that does not pass through a singularity.

4. Submajorization.Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be multisets of nonnegative real
numbers. ThenX ≤ Y if and only if

j∑

i=1

x[i] ≤
j∑

i=1

y[i] for 1 ≤ j ≤ n. (2)

4If the aim of avoiding voice-crossings were incompatible with the aim of minimizing voice leading size, we would expect to
see two distinct sets of voice-leading preferences: when voices were close together, the goal of avoiding crossings would trump the
goal of minimizing voice-leading size; when voices were far apart, crossings would pose no danger, and minimal voice leadings
could be used freely. However, composers’ voice leading preferences do not typically depend on how far apart musical voices are;
therefore it is reasonable to postulate that the goal of avoiding crossingsis compatible with the goal of minimizing voice-leading
size.



DT [8] proved that the Dalton transfer principle and the no crossings principle are equivalent. The
weakened triangle inequality is a restatement of the no crossings principle in the language of geometry. The
final condition is better known as the definition of the submajorization partial order:

Definition 1 LetX andY be multisets of nonnegative real numbers. We say thatY submajorizesX (written
X ≺w Y ) if and only if inequality (2) holds.

Submajorization is a weakened form of the majorization partial order, which requires equality in (2) when
j = n. The equivalence of (1) and (2) when a partial order is increasing in each of its elements follows from
lemmas 1 and 2 in Hardy, Littlewood, and Pólya [5]. Henceforth, we will use the symbol≺w to indicate the
partial order of theorem 1.

Majorization originated with the economist Lorenz [6], who reasoned that taking wealth away from a
rich person and giving it to a poorer person should not make a society less fair; this is the so-calledDalton
transfer principle. It imposes a partial order on multisets of nonnegative numbers representing individual
incomes or assets. Note that the condition that the partial order be nondecreasing in each of its elements
does not apply, because the total wealth in the society remains constant. We explore economic applications
more fully in section 6.

Many have proposed measures—that is, functions from the space of displacement multisets to the non-
negative reals—for voice-leading size (see [8]). We say thatf : R

n
+ → R+ is an “acceptable” voice-leading

metric if and only iff(X) ≤ f(Y ) wheneverX ≺w Y ; in general, any method of comparing (but not
necessarily measuring) voice leadings that respects the submajorization ordering is “acceptable.” Examples
includeLp-norms forp ≥ 1 and reverse lexicographic order.

3.1. The geometry of submajorization. We develop the geometry of submajorization inR
n with a view

towards comparing distances in the geometrical spaces described in section2. In what follows, letΣj(X)

denote the sum of thej largest elements of a multisetX (that is,Σj(X) =
∑j

i=1 x[i]). In addition, for a
vectorv = {v1, . . . , vn} ∈ R

n, let {|vi|} = {|v1|, . . . , |vn|}.

Definition 2 Thesubmajorization ballof a multisetX of nonnegative real numbers is the set of vectorsv
such that{|vi|} ≺w X. TheΣj-ball of X is the set of vectorsv in R

n such thatΣj({|vi|}) ≤ Σj(X).

The submajorization ball is the intersection ofΣj-balls for 1 ≤ j ≤ n. In general, aΣj-ball is a set of
simultaneous solutions to a system of linear inequalities of the forme1v1 + . . . + envn ≤ Σj(X), where
eachei is chosen from the set{0, 1,−1}, and exactlyj of theei are nonzero. (Note thatΣ1(X) = L∞(X)
andΣn(X) = L1(X).) EachΣj-ball is a convex polytope that is invariant under the group of signed per-
mutations. For example, inR3, theΣ1-ball is a filled cube, theΣ2-ball is a filled rhombic dodecahedron,
and theΣ3-ball is a filled octahedron. The intersection of theΣj-balls for1 ≤ j ≤ n—that is, the subma-
jorization ball—is a convex polytope whose vertices are the signed permutationsof the elements ofX. The
set of vectorsu such that{|ui|} submajorizesX is the complement (inRn) of the union of the interiors of
theΣj-balls for1 ≤ j ≤ n. If a vectory does not lie in either this complement or in the submajorization
ball, {|yi|} andX are not comparable.

Since the orbifoldsTn/Sn representing the spaces of chords locally resembleR
n except at their singu-

larities, the submajorization ball gives us an idea of what it means for one chord to be “closer” than another
to a given chord. LetA andB be chords inTn/Sn sufficiently far from any singularity of the orbifold, and
let D be the displacement multiset of a minimal voice leading fromB to A. The set of chords closer thanB
to A is congruent to the submajorization ball ofD in R

n. Figure 3 (left) shows the polytope—in this case an
octagon—containing the intervals (two-voice chords) “closer” than DF♯ to CF situated in two-dimensional
chord spaceTn/S2. Intervals lying in the exterior of the star are “farther” from CF than DF♯ is from CF. At
right, the same relationship is depicted for the intervals DF and CF.



Figure 3: Submajorization polytopes inTn/Sn (Möbius strip).

4. Measuring distance between chord types

A chord typeor “transpositional set class” is an equivalence class ofn-tuples of pitches under octave dis-
placement, permutation, and transposition. Chord types are equivalence classes of unordered sets of points
on the pitch circle modulo rotation. In order to capture the voice-leading possibilities of chord types,
we return to the orbifold models introduced in section 2. The space of chordtypesT

n−1/Sn, called
transposition-class space, or T-space, is the projection of the space of chordsT

n/Sn onto the zero-sum
plane (see [2, 8, 3]). Points in this space represent chord types. Paths represent voice leadings modulo
the individual transposition of either chord; they are the projections of directed line segments inRn onto
T-space.

We have a sense that some chord types offer fairly similar voice-leading possibilities and that others offer
very different choices: major chords like{C, E, G} seem very similar to augmented triads like{C, E, G♯},
and not so similar to clusters like{C, C♯, D}. Any measure of voice-leading size provides some measure
of distance between chord types: let the distance between two chord typesbe the size of the minimal voice
leading between chords belonging to those types. However, as in our discussion of submajorization, we
would like to compare distances inT-class space without committing ourselves to a particular metric. We
use the partial order that the distribution constraint imposes on displacementmultisets to define a “distance”
between chords modulo transposition of either chord. This allows us to compare voice leading possibilities
between chord types. As in our discussion of submajorization, we begin bydefining a method of comparing
distances (think voice leadings) inRn/T ≃ R

n−1, and then use the fact that this space locally resembles
T-class space.

Definition 3 Let v be andw be vectors inRn. We say thatw is T-smallerthanv if, for any real number
x, there exists a real numbery such that

{|wi + y|} ≺w {|vi + x|}. (3)

In other words,w isT-smaller thanv if and only if the set{w+y(1, . . . , 1)|y ∈ R
n} has a representative

that lies in the intersection of the submajorization balls of{|vi + x|} for x ∈ R. Therefore,w is T-
smaller thanv if the projection ofw to the zero-sum plane lies in the projection of the intersection of the
submajorization balls of{|vi + x|} onto the zero-sum plane.

Definition 3 does not tell us how to determine an ordering based onT-smallness in finite time. Theorem 2
shows that it suffices to findy in inequality (3) for finitely manyx, thus permitting a polynomial-time
algorithm forT-closeness.

Theorem 2 Letv be a vector inRn, let S be the set of pointsS = {(1/2)(vi + vj) : 1 ≤ i ≤ j ≤ n}, and



let M ⊂ S be the setM = {(1/2)(v[i] + v[n−i+1]) : 1 ≤ i ≤ ⌈n/2⌉}. LetS′ be the set of elements ofS that
are no less thanmin(M) and no greater thanmax(M). The vectorw is T-smaller thanv if and only if for
eachs in S′ there exists ay such that

{|wi + y|} ≺w {|vi − s|}. (4)

Corollary 1 If v is symmetric about a valuem, then{|vi − m|} is minimal.

We now develop a notion of distance in transposition-class space. LetTx(A) represent the transposition
of chordA by x pitches, and let[A] = {Tx(A) : x ∈ R} represent the chord type ofA.

Definition 4 Let A, B, andC be chords. We say that[C] is T-closerto [A] than [B] is to [A] if, for every
voice leading fromA to some transpositionTx(B), there exists someT-smaller voice leading fromA to a
transposition ofC.

Example.We claim that the chord type[{0, 4, 7}] of major triads isT-closer to the class of augmented
triads[{0, 4, 8}] than the cluster[{0, 1, 2}] is to the class of augmented triads. The voice leading(x, 1+x, 2+
x)→(0, 4, 8) has displacement multiset{|x|, |x−3|, |x−6|} and the voice leading(y, 4+y, 7+y)→(0, 4, 8)
has displacement multiset{|y|, |y|, |y − 1|}. We must show that for everyx there exists ay such that
{|x|, |x − 3|, |x − 6|} submajorizes{|y|, |y|, |y − 1|}. In this case, settingy equal to zero suffices for allx.

A voice leading isinversionally symmetricif the multiset of directed distances traveled by each of its
voices is symmetric about some valuem. Corollary 1 implies that all metrics agree on how to minimize an
inversionally symmetric voice leading. Therefore, all metrics agree about the minimal voice leadings be-
tween two perfect fifths, two major or two minor triads, and two dominant or two half-diminished sevenths.
These are among the most common voice leadings we find in Western tonal music.

If [A] and[B] are chord types sufficiently far from the boundary of the orbifold, the set of chord types
T-closer than[B] to [A] is a polytope centered at[A] in OPT space; it is congruent to the projection of the
intersection of the submajorization balls for minimal voice leadings5 of the formA→Tx(B). In trichordal
OPT space, these polytopes are the intersections of two hexagons, one rotated 30◦ from the other.

5. Evenness

In this section, we develop an application ofT-closeness to measuring the “evenness” of a chord type.
For anyn, we refer to the chord{0, 12/n, 24/n, . . . , 12(n − 1)/n} as theperfectly even chord; its chord
type consists of the chords that divide the octave inton equal parts.

Definition 5 The chord type[A] is more eventhan the chord type[B] if [A] is T-closer than[B] to the
perfectly even chord type.

Figure 4 shows the evenness ordering on the orbifoldT
2/(S3 ×Z2) representing trichords modulo inver-

sion. Arrows indicate contours along whichT-closeness to the perfectly even chord type (augmented triads)
increases.T-closeness imposes a univocal ordering on trichords in twelve-tone equal temperament, with
the next-most-even chord type being[{0, 3, 7}], which represents both the major and minor triads. However,
outside of 12-tet there exist incomparable trichords (for example,[{0, 2.2, 4.3}] and[{0, 1, 5}]). We depict
theT-closeness tetrachord ordering on the orbifoldT

3/(S4 × Z2) in figure 5, left; a portion of the same
partial ordering is abstracted in the lattice at right. The diminished seventh[{0, 3, 6, 9}] is perfectly even,

5There is a slight subtlety here. Since we are also dealing with the quotient operation O, there may not be a unique class
of crossing-free voice leadings between chord types[A] and [B] that contains all the minimal crossing-free voice leadings from
instances of[A] to instances of[B]. For example, letA = {0, 0, 0, 0} andB = {0, 4, 5, 9}. There are two classes of voice leadings
from A to B that contain minimal voice leadings:(0, 0, 0, 0)→Tx(0, 4, 5, 9) and(0, 0, 0, 0)→Tx(0, 1, 5, 8).



and the next-most-even chord type is[{0, 2, 5, 8}], which includes both the dominant seventh and the half-
diminished seventh. In contrast to the situation with trichords, the evenness ordering on 12-tet tetrachords
is not univocal.
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5.1. Maximally even sets. Clough and Douthett [4] define themaximally evenn-note chordas an ap-
proximation of the perfectly even chord ink-tet: {0, ⌊k/n⌋, ⌊2k/n⌋, . . . , ⌊k(n−1)/n⌋} (the octave has size
k). This definition can be understood in terms of voice leading. Since the nearest integer to a real number
x is given by⌊x + 1/2⌋, Clough and Douthett’s algorithm maps each note of a perfectly even chordto the
nearest integer-valued pitch class. The collection of distances{|x − ⌊x + 1/2⌋|}, wherex ranges over the
notes of the perfectly even chord, determines the size of the voice leading.It follows from the requirement
that any acceptable method of comparing voice leadings be nondecreasingin each of its elements that no



other voice leading to an integer-valued pitch class set can be smaller. This generalizes to our definition of
evenness and only makes use of intrinsic features of pitch-class sets.

In later work, Block and Douthett [1] propose a general definition of evenness. They represent chord
types by sets of points on the unit circle; the “evenness” of a chord type equals the sum of the Euclidean
lengths of then(n − 1)/2 line segments between these points (so, for example, a semitone contributes
2 sin(π/12) ≃ 0.52 and a tritone contributes2). Using this measure, the perfectly even chord is indeed
maximal, unison is minimal, and the maximally even chord is the most even among equally tempered chords.
Block and Douthett’s measure agrees with our evenness ordering for chords close to the perfectly even chord;
however, there is some disagreement for less even chords. To use the lengths of line segments between points
on the unit circle seems arbitrary; in the endnotes to their paper [1, p. 40],they provide more flexibility by
permitting other choices of weights for distances between notes in a chord, and they propose a set of general
constraints on the choice of an evenness measure. Our evenness ordering based onT-closeness satisfies
these constraints.

6. Applications to economics

As noted earlier, there is a striking connection between the problem of measuring voice-leading size and
problems considered in welfare economics. An individual’s wealth or incomecan be measured as a real
number, using units of dollars or utility (or log-dollars or log-utility). Points inR

n can represent the wealth
(or income) of groups of individuals. Thus(x1, . . . , xn) indicates that person number one hasx1 dollars,
person number two hasx2 dollars, and so on.

Like music theorists, economists are interested in quotients ofR
n. The spaceRn/Sn results from a basic

principle of nondiscrimination or “anonymization”: what is important to economics is the distribution of
wealth in society, not which individuals have which net worths; hence, thedistributions (3, 2) and (2, 3) are
identical. Similarly, if we measure wealth in log-dollars, then points inR

n−1/Sn can represent anonymized
net worths modulo inflation. Here, the points (3, 2) and (4, 3) are equivalent, since inflation, represented by
addition in log-income space, transforms one into the other. The musical operations of octave equivalence
and inversion have no natural analogue in economics.

Points inR
n/Sn can be calledstates; they are the economic analogues to multisets of pitches. Points

in R
n−1/Sn can be calledinflation-adjusted states; they are the analogues to transpositional set-classes

of multisets of pitches. The economic analogue to a voice leading might be called achange:a mapping
from one state to another, showing what happens to individual assets. Thus the change(3, 2, 4)→(2, 3, 4)
indicates that the individual who had 3 units of wealth loses one unit, the individual who had 2 units of
wealth gains one unit, and nothing happens to the individual with 4 units. Changes can result from transfers
between individuals, though they need not: the change(3, 2)→(2, 2) might result from an individual losing
or destroying a unit of wealth.

Both musicians and economists face significant uncertainty about how to measure distances in their
quotient spaces. We have proposed that the distribution constraint represents a reasonable minimal constraint
on musical measures of voice-leading size. Might it be the case that it also represents a reasonable constraint
on changes in economic states?

We suggest that it may be. The “no crossings principle” of theorem 1 states that there is a minimal change
between states that does not disturb the order of individuals by net worth. In other words, there is always
a minimal-size change between any two states that satisfies the following condition: if Anne is richer than
Bob in the initial state, then Anne is at least as rich as Bob in the final state. From an economic standpoint,
this is an extremely attractive assumption, as it ensures that there will alwaysbe a minimally disruptive
redistribution scheme that does not provide incentives to abandon money.(We assume that in general an
ideal redistributive policy should move from an initial distribution to a “target” distribution along a minimal-



length path—minimizing the amount of economic “work” required to get between the two states.) Suppose
the condition were violated: Alice would have a pre-redistribution incentive totrade economic places with
Bob, giving him the difference between their net assets. But Bob would have no inclination to accept Alice’s
gift—her excess money would be a “hot potato” that neither individual wanted. As a result, there would be
severe conflicts between the goal of minimizing economic “work” and the goalof providing individuals with
a reason to keep their money.

The music-theoretical problem of measuring theevennessof chords is closely related to the economic
problem of measuringinequality. In section 5, we proposed measuring evenness using the size of the
smallest voice leading to any chord that divides the octave perfectly evenly. In the same way, we can
measure the inequality of an income distribution using the size of the smallest change to a perfectly equal
distribution of wealth. (Note that economic equality is analogous to musical unevenness: a perfectly even
distribution of wealth, like{4, 4, 4}, is like a perfectlyunevenchord such as{E, E, E}, which is maximally
distant from the perfectly even chord.) In doing so, we make a significantdeparture from economic tradition.
Economists use submajorization to comparestates:the state{6, 6, 2, 2} submajorizes{5, 5, 3, 3}, and is
therefore considered to be more unequal. We propose using submajorization to measurechangesbetween
states: we say that{6, 6, 2, 2} is more unequal than{5, 5, 3, 3} because it isfarther from the nearest equal
division according to the submajorization partial order. That is, the minimal change from{6, 6, 2, 2} to
the nearest equal division point is(6, 6, 2, 2)→(4, 4, 4, 4) which has displacement multiset{2, 2, 2, 2}. By
contrast, the minimal change from{5, 5, 3, 3} to a point of equal division is(5, 5, 3, 3)→(4, 4, 4, 4), which
has displacement multiset{1, 1, 1, 1}. It is because{2, 2, 2, 2} submajorizes{1, 1, 1, 1} that we consider
{6, 6, 2, 2} to be more unequal than{5, 5, 3, 3}.

We stress that our thoughts here are preliminary: our goal here is simply to point to an interesting formal
analogy between problems in music theory and problems in economics. Whetherthis analogy is truly useful,
or merely an interesting curiosity, remains a matter for further inquiry.
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