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Abstract
A geometric dissection is a cutting of a geometric figure into pieces that we canrearrange to form another figure.
Twist-hinged dissections have the amazing property that all pieces are connected by special hinges that allow the one
figure to be converted to the other by means of twists. This paper exploressuch dissections for ringlike figures based
on regular polygons. The twist-hinged dissections of these figures can be adapted to create reconfigurable benches
that ring a pillar or tree, exhibiting remarkable symmetry and making singular design statements.

1. Introduction

A geometric dissection is a cutting of a geometric figure into pieces that we can rearrange to form another
figure [13, 20]. Such visual demonstrations of the equivalence of area span from the geometric explorations
of the ancient Greeks [2, 7] to the flowering of Arabic-Islamic mathematics [1, 4, 24, 26] to the emergence of
mathematical puzzle columns in newspapers and magazines [8, 9, 21, 22] to the appearance of articles on the
world-wide web [27]. During the last century, the emphasis has generallybeen on minimizing the number
of pieces for any given dissection. This emphasis on efficiency and elegance has catalyzed some remarkably
beautiful dissections that serve as attractive ambassadors for the field of mathematics [3].

As dissection methods have become more sophisticated, attention has also focused on special properties.
Most notable is the property that all pieces of a dissection be connected byhinges, so that when the pieces
are swung one way on the hinges, they form one figure, and when swung the other way on the hinges, they
form the other figure. A hundred years ago, Henry Dudeney demonstrated such a hinged dissection of an
equilateral triangle to a square [10]. Since then, enough hinged dissections have been identified to fill a whole
book on the subject [16]. The power of hinged dissections can be mesmerizing, as indicated by designers’
projects to adapt the triangle-to-square dissection to art objects such as ahinged set of tables [5, 12].

Other types of hinges have also drawn attention. Atwist hingehas a point of rotation on the interior of
the line segment along which two pieces touch edge-to-edge. It allows one piece to be flipped over relative to
the other, using 180◦ rotation through the third dimension. Pieces A and B (with exaggerated thickness) are
twist-hinged together in Figure 1. The twist-hinged dissection of an ellipse to a heart (Figure 2) is a direct
application. We mark any piece that is turned over an odd number of times with an“∗” on one side and a
“⋆” on the other. A few isolated dissections [11, 23, 25] were the only examples of twist-hinged dissections
prior to a more concerted search for them [14, 15, 16, 17, 18].

In this article we shall explore twist-hinged dissections of ringlike figures thatare based on regular
polygons. From high school geometry, we recall that aregular polygonis a polygon in which all edges have
the same length and all angles have the same measure. We represent ap-sided regular polygon of side length
x with the notationx-{p}. A polygonal ringis a regular polygon with a similar, but smaller, regular polygon
cut out of it, such that the polygons share the same center and each vertex of the smaller polygon is on a line
segment from a vertex of the larger polygon to its center. We represent apolygonal ring based on regular
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Figure 1: A twist hinge for pieces A and B
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Figure 2: Twist-hinged dissection of an ellipse to a heart

polygon{p} of outer side lengthX and inner side lengthx with the notation(X,x)-{p}-ring. A polygonal
anti-ring is the same as a polygonal ring, except that each vertex of the smaller polygon is on the line segment
from the midpoint of a side of the large polygon to its center. (The distinction between a polygonal ring and a
polygonal anti-ring draws inspiration from the distinction between a prism and an antiprism, the latter being
prism-like objects identified by Johannes Kepler [19].) In Figure 3 we see as examples both a pentagonal
ring and a pentagonal anti-ring.

At first glance, one might wonder what possible application to art and design one could find for polygonal
rings. Yet designers of outdoor furniture have long produced benches that ring a tree trunk or lamp post.

(hole)(hole)

Figure 3: Pentagonal ring and pentagonal anti-ring



Typically, the benches employ either a wrought-iron framework or a lattice-like construction of wood cross-
braces. We show how to design, at least implicitly, such benches so that they can be reconfigured as the tree
trunk expands, or alternative seating is desired! These designs are sosymmetrical and appealing in their use
of twisting motion that they could well be show-stoppers at any garden party.

We should note two considerations about using the twist-hinged dissections asthe basis for ring benches.
First, we assume that the ring benches have no backs, since it would be tricky twisting them out of the way
in the alternative configuration. Second, it seems to be easy to accommodate the bench’s legs. Just place
them at the corners of those pieces not marked by asterisks or stars, whenever that corner is a vertex in
both resulting figures. Note that a polygonal ring has vertices along the inner polygon as well as the outer
polygon.

2. A New Family of Twist-Hinged Dissections

In [6], Jean Bauer presented a number of new relationships among polygons. An especially nice one relates
the polygons{p} and{2p} for every value ofp > 3: When p is an even number, there is a dissection
of a (2cos(π/p))-{2p} to two (1+2cos(π/p),1)-{p}-rings. Whenp is odd, there is a dissection of a
(2cos(π/p))-{2p} to two (1+2cos(π/p),1)-{p}-anti-rings.

This is illustrated in Figure 4 for the case ofp = 5, and derives for generalp from the following. As is
well-known, we can arrange 2p rhombuses with small angle 180◦/p around a central point, then 2p rhom-
buses with small angle 2∗180◦/p around them, and so on, for a total ofp−3 sets of 2p rhombuses. Finally,
we arrange around the outermost level 2p isosceles triangles whose equal angles are 180◦/p. We thus get a
regular 2p-sided polygon. Bauer’s observation was that we could take exactly halfof the constituent rhom-
buses and isosceles triangles and build outwards from a regularp-sided polygon, obtaining a larger regular
p-sided polygon. Of course, we can take the other half of the constituent rhombuses and isosceles triangles
and get a second, identical regularp-sided polygon. Removing the two small central regular polygons leaves
two polygonal rings ifp is even, and two polygonal anti-rings ifp is odd.

2

Figure 4: Rhombic structure for Bauer’s relationship whenp = 5

It is not difficult to see how to glue the rhombuses and isosceles triangles together to get a lovely 2p-piece
dissection for this relationship. There is a corresponding(4p−2)-piece twist-hinged dissection. Figure 5
illustrates it for the case ofp = 5. The decagon separates along the polygonal path that touches no triangles,
and each half twists into a pentagonal anti-ring. The dissections for other values ofp are analogous.

An example whenp is even is illustrated in Figure 6, which shows the dissection for the case ofp = 6.
The dodecagon separates and twists into two hexagonal rings.
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Figure 5: Twist-hinged dissection of decagon to two pentagonal anti-rings
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Figure 6: Twist-hinged dissection of dodecagon to two hexagonal rings

3. An Even Richer New Family

If we abandon our interest in anti-rings and focus on rings, there is an even more wonderful family of twist-
hinged dissections. The first example, in Figure 7, is a twist-hinged dissection of a(1+φ ,1)-decagonal ring
to two (2+φ)-pentagons. (Recall thatφ is the golden ratio, which is approximately 1.618). The second
example, in Figure 8, is a twist-hinged dissection of a(

√
3,1)-dodecagonal ring to three(1+

√
3)-squares.

We can also dissect multiple rings to many other rings. The example in Figure 9 is atwist-hinged
dissection of two dodecagonal rings to three octagonal rings. The ratio of the inner side length of the
dodecagonal ring to the inner side length of the octagonal ring can vary over a wide range, and the outer side
lengths of the polygonal rings depend on these values. In Figure 9, we choose a ratio of 4 : 3 for the ratio of
the inner side length of the dodecagonal ring to the inner side length of the octagonal ring.

To create such a dissection, we first choose the number of sides in each of the two different polygonal
rings: choosep andq to be natural numbers withp > q. We next determine the multiplicity of each type of
polygonal ring. Letg = gcd(p,q), the greatest common divisor ofp andq. There will beq/g {p}-rings and
p/g {q}-rings. Next we choose the lengths of the inner sides of the polygonal rings: x will be the inner side
length of the{p}-rings, andy will be the inner side length of the{q}-rings, withx > y≥ 0.

Let h = (x−y)/(tan(π/q)− tan(π/p)). Let z= (x−y)+2htan(π/p). We can determine the outer side
lengths of the polygonal rings:X = y+zwill be the outer side length of the{p}-rings andY = x+zwill be
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Figure 7: Twist-hinged dissection of a decagonal ring to two pentagons
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Figure 8: Twist-hinged dissection of a dodecagonal ring to three squares
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Figure 9: Twist-hinged dissection of two dodecagonal rings to three octagonal rings

the outer side length of the{q}-rings. We cut the pieces in a way consistent with what we do in Figure 9, and
then hinge in a greedy fashion: Starting with the first{p}-ring and the first{q}-ring, hinge as many pieces



Figure 10: Sequence of perspectives: Decagonal ring to two pentagons

as possible from what remains of the current{q}-ring to fill up as completely as possible what remains of
the current{p}-ring. The number of twist-hinged assemblages will be one less than the total number of
polygonal rings of both types.



In Figure 9,p = 12 andq = 8, andg = gcd(12,8) = 4. Thus there are 8/4 = 2 dodecagonal rings and
12/4 = 3 octagonal rings. Once we choosex andy, we can compute valuesh,z,X, andY. There will be 4
twist-hinged assemblages: 2 from one octagonal ring, and one each from the other two octagonal rings.

Wheny = 0, the corresponding polygonal rings become simple polygons. This is the case for either
of the first two examples. For the second example, of dodecagonal ringsand squares, tan(π/4) = 1 and
tan(π/12) = 2−

√
3. Whenx = 1, X =

√
3 andY = 1+

√
3.

Something may seem wrong if you compare either Figure 7 or Figure 8 with Figure 9: The pieces that
are not turned over in the former figures do not share sides with the innerboundary of the rings, whereas
those pieces that are not turned over in the latter figure do share sides withthe inner boundary of the rings.
The reason is that in the latter figure, I switched which pieces get turned over, so as to not turn over the pieces
of larger area. This choice makes sense if you actually wish to build ring benches!

4. Conclusion

We have described two different families of twist-hinged dissections upon which to base the design of ring
benches. From a practical point of view, the second family is probably preferable, for two reasons. First, the
pieces in the second family are all convex, and there are fewer sharp angles, which means that the benches
should be easier to construct. Second, the pieces are generally more compact in the second family, and the
hinges are thus not so far from the extremities of the pieces. Then the pieces should connect together with
less torque on the individual hinges.

For each of the dissections described, it is instructive for the reader to think through the sequence of
twists that take the polygonal ring or rings to their alternative figure or figures. Not just any sequence will
work, because it is possible to have one piece collide with another if the wrong sequence is chosen. Figure 10
shows five snapshots in a sequence that converts the decagonal ring totwo pentagons, as in Figure 7. At the
top, we slide the two assemblages apart. We then work simultaneously on each end of the two assemblages,
showing the last four pairs of twists on each assemblage. We identify the twisthinges that take part in each
of those twists.

One goal in identifying feasible sequences is to find those that emphasize thesymmetry and structure of
the dissection. It is possible to perform some number of twists simultaneously, either starting them all at the
same instant of time and completing them at the same instant of time, as in Figure 10, or starting one twist,
then starting a second twist before the first completes, then a third before the second (or possibly the first)
completes, etc. An investigation into what is possible yields yet one more level of art (or design) at work.
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