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Abstract

A geometric dissection is a cutting of a geometric figure into pieces that weeaarange to form another figure.
Twist-hinged dissections have the amazing property that all piecesrameated by special hinges that allow the one
figure to be converted to the other by means of twists. This paper exglacbglissections for ringlike figures based
on regular polygons. The twist-hinged dissections of these figuresecaddpted to create reconfigurable benches
that ring a pillar or tree, exhibiting remarkable symmetry and making singelsign statements.

1. Introduction

A geometric dissection is a cutting of a geometric figure into pieces that we amamge to form another
figure [13, 20]. Such visual demonstrations of the equivalence afgyan from the geometric explorations
of the ancient Greeks [2, 7] to the flowering of Arabic-Islamic mathematic$,[24, 26] to the emergence of
mathematical puzzle columns in newspapers and magazines [8, 9, 21, 2Z2hppiarance of articles on the
world-wide web [27]. During the last century, the emphasis has gendradly on minimizing the number
of pieces for any given dissection. This emphasis on efficiency andredechas catalyzed some remarkably
beautiful dissections that serve as attractive ambassadors for theffeédleematics [3].

As dissection methods have become more sophisticated, attention has atsmfonwspecial properties.
Most notable is the property that all pieces of a dissection be connecteiddpys, so that when the pieces
are swung one way on the hinges, they form one figure, and whergstvarother way on the hinges, they
form the other figure. A hundred years ago, Henry Dudeney denatedtsuch a hinged dissection of an
equilateral triangle to a square [10]. Since then, enough hinged digsehtwe been identified to fill a whole
book on the subject [16]. The power of hinged dissections can be miegmgeas indicated by designers’
projects to adapt the triangle-to-square dissection to art objects sudfiraged set of tables [5, 12].

Other types of hinges have also drawn attentiortwist hingehas a point of rotation on the interior of
the line segment along which two pieces touch edge-to-edge. It allowdeneetp be flipped over relative to
the other, using 180rotation through the third dimension. Pieces A and B (with exaggerated tlsiskase
twist-hinged together in Figure 1. The twist-hinged dissection of an ellipse gau {Figure 2) is a direct
application. We mark any piece that is turned over an odd number of times witk’ @m one side and a
“x” on the other. A few isolated dissections [11, 23, 25] were the only exagflavist-hinged dissections
prior to a more concerted search for them [14, 15, 16, 17, 18].

In this article we shall explore twist-hinged dissections of ringlike figures dnatbased on regular
polygons. From high school geometry, we recall theggular polygonis a polygon in which all edges have
the same length and all angles have the same measure. We reprpsgtéd regular polygon of side length
x with the notatiorx-{ p}. A polygonal ringis a regular polygon with a similar, but smaller, regular polygon
cut out of it, such that the polygons share the same center and eaohofette smaller polygon is on a line
segment from a vertex of the larger polygon to its center. We repregauiiygonal ring based on regular



Figure 1: A twist hinge for pieces A and B
(*\

Figure 2: Twist-hinged dissection of an ellipse to a heart

polygon{p} of outer side lengtiX and inner side lengtk with the notation(X,x)-{ p}-ring. A polygonal
anti-ring is the same as a polygonal ring, except that each vertex of the smalleopasyon the line segment
from the midpoint of a side of the large polygon to its center. (The distinctibmden a polygonal ring and a
polygonal anti-ring draws inspiration from the distinction between a pristrearantiprism, the latter being
prism-like objects identified by Johannes Kepler [19].) In Figure 3 we sesxamples both a pentagonal
ring and a pentagonal anti-ring.

At first glance, one might wonder what possible application to art andgmlese could find for polygonal
rings. Yet designers of outdoor furniture have long produced lentiat ring a tree trunk or lamp post.

Figure 3: Pentagonal ring and pentagonal anti-ring



Typically, the benches employ either a wrought-iron framework or a lattieeelikastruction of wood cross-
braces. We show how to design, at least implicitly, such benches so thatathée reconfigured as the tree
trunk expands, or alternative seating is desired! These designs symstetrical and appealing in their use
of twisting motion that they could well be show-stoppers at any garden. party

We should note two considerations about using the twist-hinged dissectithrestzessis for ring benches.
First, we assume that the ring benches have no backs, since it wouldKyetavisting them out of the way
in the alternative configuration. Second, it seems to be easy to accommaadientth’s legs. Just place
them at the corners of those pieces not marked by asterisks or stasewehn that corner is a vertex in
both resulting figures. Note that a polygonal ring has vertices along tlee palygon as well as the outer

polygon.

2. A New Family of Twist-Hinged Dissections

In [6], Jean Bauer presented a number of new relationships amongopslygn especially nice one relates
the polygons{p} and {2p} for every value ofp > 3: Whenp is an even number, there is a dissection
of a (2cogm/p))-{2p} to two (1+2cog/p),1)-{p}-rings. Whenp is odd, there is a dissection of a
(2cogm/p))-{2p} to two (1+2cog 1/ p),1)-{ p}-anti-rings.

This is illustrated in Figure 4 for the case pf&= 5, and derives for generalfrom the following. As is
well-known, we can arrangephombuses with small angle 18® around a central point, therpZhom-
buses with small anglexA80°/ p around them, and so on, for a totalpf 3 sets of  rhombuses. Finally,
we arrange around the outermost levpli®osceles triangles whose equal angles aré/80Ne thus get a
regular 2-sided polygon. Bauer’s observation was that we could take exactlphtdé constituent rhom-
buses and isosceles triangles and build outwards from a regrgiaied polygon, obtaining a larger regular
p-sided polygon. Of course, we can take the other half of the constitbentbuses and isosceles triangles
and get a second, identical regufasided polygon. Removing the two small central regular polygons leaves
two polygonal rings ifp is even, and two polygonal anti-ringspfis odd.

Figure 4: Rhombic structure for Bauer’s relationship whes- 5

Itis not difficult to see how to glue the rhombuses and isosceles triangkethierdo get a lovely g-piece
dissection for this relationship. There is a correspondig—2)-piece twist-hinged dissection. Figure 5
illustrates it for the case gf = 5. The decagon separates along the polygonal path that touches gtesjan
and each half twists into a pentagonal anti-ring. The dissections for aihers/ofp are analogous.

An example wherp is even is illustrated in Figure 6, which shows the dissection for the cage-a8.
The dodecagon separates and twists into two hexagonal rings.



Figure 5: Twist-hinged dissection of decagon to two pentagonal rmgs

Figure 6: Twist-hinged dissection of dodecagon to two hexagonakring

3. An Even Richer New Family

If we abandon our interest in anti-rings and focus on rings, there isemmore wonderful family of twist-
hinged dissections. The first example, in Figure 7, is a twist-hinged dissexdta( 1+ ¢, 1)-decagonal ring
to two (24 ¢)-pentagons. (Recall that is the golden ratio, which is approximately 1.618). The second
example, in Figure 8, is a twist-hinged dissection ¢4, 1)-dodecagonal ring to thrgd++/3)-squares.

We can also dissect multiple rings to many other rings. The example in Figure ®wistehinged
dissection of two dodecagonal rings to three octagonal rings. The ratleednner side length of the
dodecagonal ring to the inner side length of the octagonal ring can vanaavide range, and the outer side
lengths of the polygonal rings depend on these values. In Figure hheoese a ratio of 4 : 3 for the ratio of
the inner side length of the dodecagonal ring to the inner side length of thgamal ring.

To create such a dissection, we first choose the number of sides in fethehtavo different polygonal
rings: choose andq to be natural numbers with > g. We next determine the multiplicity of each type of
polygonal ring. Leg = gcd(p, q), the greatest common divisor pfandg. There will beq/g { p}-rings and
p/g {q}-rings. Next we choose the lengths of the inner sides of the polygomg: sirwill be the inner side
length of the{ p}-rings, andy will be the inner side length of thgg}-rings, withx >y > 0.

Leth= (x—y)/(tan(t/q) — tan(11/p)). Letz= (x—y) + 2htan(rt/p). We can determine the outer side
lengths of the polygonal ring = y+ z will be the outer side length of thigp}-rings andYy = x+ z will be



Figure 9: Twist-hinged dissection of two dodecagonal rings to thretagonal rings

the outer side length of thigy}-rings. We cut the pieces in a way consistent with what we do in Figured, an
then hinge in a greedy fashion: Starting with the f{rp}-ring and the first q}-ring, hinge as many pieces



ctives: Decagonal ring to two pentagons

of pers

Figure 10: Sequence

of
less than the tmidden of

ompletely as possible what remains

t{p}-ring. The number of twist-hinged assemblages will be one

as possible from what remains of the currég}-ring to fill up as c
polygonal rings of both types.

the curren



In Figure 9,p = 12 andq = 8, andg = gcd(12,8) = 4. Thus there are/8 = 2 dodecagonal rings and
12/4 = 3 octagonal rings. Once we choosandy, we can compute valudsz X, andY. There will be 4
twist-hinged assemblages: 2 from one octagonal ring, and one eachheoother two octagonal rings.

Wheny = 0, the corresponding polygonal rings become simple polygons. This isageefor either
of the first two examples. For the second example, of dodecagonalaimysquares, tém/4) = 1 and
tan(11/12) = 2—+/3. Whenx = 1, X = v/3 andY = 1++/3.

Something may seem wrong if you compare either Figure 7 or Figure 8 withd=8jufhe pieces that
are not turned over in the former figures do not share sides with the lrmedary of the rings, whereas
those pieces that are not turned over in the latter figure do share sidethavitiner boundary of the rings.
The reason is that in the latter figure, | switched which pieces get turrexdsavas to not turn over the pieces
of larger area. This choice makes sense if you actually wish to build ringhlesh

4. Conclusion

We have described two different families of twist-hinged dissections ugoohvo base the design of ring
benches. From a practical point of view, the second family is probakfegable, for two reasons. First, the
pieces in the second family are all convex, and there are fewer shgigsawhich means that the benches
should be easier to construct. Second, the pieces are generally moractamgie second family, and the
hinges are thus not so far from the extremities of the pieces. Then thesgleceld connect together with
less torgue on the individual hinges.

For each of the dissections described, it is instructive for the readeimto ttirough the sequence of
twists that take the polygonal ring or rings to their alternative figure ordigguNot just any sequence will
work, because it is possible to have one piece collide with another if thegveeguence is chosen. Figure 10
shows five snapshots in a sequence that converts the decagonaltrimgpentagons, as in Figure 7. At the
top, we slide the two assemblages apart. We then work simultaneously onnebahtke two assemblages,
showing the last four pairs of twists on each assemblage. We identify thehiwigs that take part in each
of those twists.

One goal in identifying feasible sequences is to find those that emphasizgntineetry and structure of
the dissection. It is possible to perform some number of twists simultaneoitiséy, starting them all at the
same instant of time and completing them at the same instant of time, as in Figuresfiditing one twist,
then starting a second twist before the first completes, then a third beéosetond (or possibly the first)
completes, etc. An investigation into what is possible yields yet one more lesdl @r design) at work.
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