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1. Abstract 

 
This paper looks at the question of representing small finite groups as groups of transformations of a 
compact surface of genus two or more. Transformations which reverse the orientation of the surface are 
allowed. In particular, we will draw the portrait of a group of order 48 with symmetric genus 2 which is 
the image of a hybrid triangle group with orientation reversing elements. 

 
2. Introduction 

 
The first portrait of a group was given in Burnside [1]. Burnside constructed a portrait of the cyclic group 
with n elements and the free group, Fn, on n generators in the Euclidean plane. More precisely, since the 
one to one plane transformations that Burnside used were inversions in a circle, they should be thought of 
as transformations of the Riemann sphere. The relationship between the circles used determines the 
resulting group. The construction of the free group, F2, can be most easily drawn in the hyperbolic plane 
(see Burnside [1], page 379). Burnside began with a single region associated with the identity 
transformation, E. Since inversion in a circle reverses the orientation of the plane, Burnside used a 
composition of two inversions for each element of the free group. The region E is colored white and the 
region obtained by a single inversion is colored black. Therefore, a fundamental region for the group of 
transformations is the union of one white and one black region. Each white region (and its associated 
black region) is labeled with the element of the free group that transforms the fundamental region into 
that region.  

Figure 1 is a portrait of this two generator free group 
constructed by Geometer's SketchPad. Each 'triangle' is bounded 
by arcs colored red, blue or black in our sketch. Inversion takes a 
shaded region into a non-shaded region and vice versa. Therefore, 
each group action is represented by the composite of two such 
inversions. We interpret this picture as a portrait of a group with 
presentation 21|,, Fuvwwvu ≅= .  

Now suppose that we have a finite group, G, generated by 
2 generators. Thus, the elements u, v and uv have finite orders, say 

, m, and n. This group is the image of the free group by a normal 
subgroup, N. After associating an element of F
l

2 to each region, the 
final step is to identify all regions with labels from the same coset 
of N. After this identification, the finite group, G, is represented as   Figure 1 - Portrait of a Free Group [5] 
a group of transformations on a surface of some genus. The finite 
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group G is the quotient of a Triangle group,  with presentation ),,( nmlT 1)(|, === nml uvvuvu . 

This is an orientation preserving action. Burnside (see [1], page 396) drew a portrait of the quaternion 
group of order 8 on a surface of genus 2. The paper, Portraits of Groups [5] drew a portrait of the dicyclic 
group of order 12 on a surface of genus 2 and a portrait of the quasiabelian group of order 16 on a surface 
of genus 3. 
 

3. Non-Orientable Actions 
 

Suppose that a finite group G acts on a surface in such a way that some of the elements reverse the 
orientation of the surface. In this case, half of the elements will reverse the orientation and half will 
preserve it. The half that preserve the orientation form a subgroup, denoted G+ with the orientation 
reversing elements as its coset. The group G+ is always the image of a Fuchsian group and triangle groups 
are a type of Fuchsian group. 

There are two possible groups with a specific triangle group as their orientation preserving 
subgroup [3]. The group with presentation 1)()()(|,, 222 ====== nml trstrstsrtsr  is called 

the Full Triangle Group, denoted . The triangle group  is clearly the subgroup ),,( nmlFT ),,( nmlT
trstrs ,,  of the full triangle group. Any triangle group is a subgroup of a full triangle group. Many 

finite groups occur as the quotient of a full triangle group where the involutions are reflections. These 
groups contain elements that have orientation reversing action on the surface.  

The portraits of groups given in [1] and [5] are really portraits of a quotient of a full triangle 
group where the black regions should be labeled with the orientation reversing elements. Therefore, these 
portraits can be thought of as portraits of extensions of degree 2 of the orientation preserving subgroups, 
namely the quaternion group of order 8, the dicyclic group of order 12 and the quasiabelian group of 
order 16. That is why we need the fundamental region of the orientation preserving group of 
transformations to be one white and one black region combined. It follows that we already know how to 
draw a portrait of any quotient of a full triangle group. 

A group with presentation 1],[|, 2 === nm xcxcxc  is called a Hybrid Triangle Group and 

is denoted by . The orientation preserving subgroup of  is ),( nmHT ),( nmHT cxcx ,1−  and this 

subgroup is isomorphic to the triangle group . This is the second possible group with a specific 
triangle group as its orientation preserving subgroup. The purpose of this paper is to draw a portrait of a 
group of symmetric genus 2, where the group is a quotient of a hybrid triangle group and hence has 
orientation reversing elements. 

),,( nmmT

A hybrid triangle group,  is a subgroup of the full triangle group  ( [2], 
page 39). Let 

),( nmHT )2,2,( nmFT
rsx =  and  in the full triangle group . It is easy to see that 

, since  implies that these elements commute. Therefore, the subgroup 

tc = )2,2,( nmFT
2)(],[ −== sttsrtrsxc 1)( 2 =tr

trs,  satisfies the relations of . Thus our drawing of any finite quotient of  will be 
as a subgroup of .  

),( nmHT ),( nmHT
)2,2,( nmFT

In representing  in a diagram, the generator r is inversion in a blue curve, s is 
inversion in a black curve and t is inversion in a red curve. Properly, all of the inversions should be 
reflections in "lines" in hyperbolic space and the surface is a quotient of hyperbolic space. However, the 
important property is the relationship between the triangles and so we will distort the triangles so that they 
fit into a polygonal region in the plane. This has the advantage that the triangles do not become 
microscopically small as they get near the boundary of the polygonal region. The polygonal region for the 
group P

)2,2,( nmFT

48 is given in Figure 2. 
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Figure 2 – Polygonal representation of P48

 
 The diagram in figure 2 is part of the diagram for . Regions labeled L)2,8,3(FT 1 (pale yellow) 
and D1 (blue) have the same orientation as the 
fundamental region and regions labeled L2 (darker 
yellow) and D2 (purple) have the opposite 
orientation from the fundamental region, under the 
action of . The fundamental region for 
the action of the elements of  is the 
union of the regions L

)2,8,3(FT
)4,3(HT

1 (pale yellow) and L2 
(darker yellow) just below the center of figure 2.  
We label each region in the diagram for  
by the element of  that transforms the 
fundamental region (labeled with the identity) into 
the target region. There are two types of images of 
this fundamental region, depending on whether the 
orientation of the image is the same as the 
orientation of the fundamental region or whether  Figure 3 - Polygon of P

)4,3(HT
)4,3(HT

48 with connectivity information 
the orientation is reversed. Regions with reversed 



orientation are colored in two darker shades, blue (D1) and purple(D2). Thus each region of  is 
colored with either two yellow shades (L) or two blue shades (D). A light fundamental region is 
transformed into another light region by the composition of a 
reflection in a blue curve (interchanging pale yellow (L

)4,3(HT

1) and 
darker yellow (L2) first) and then a reflection in a black curve. 
This corresponds a rotation given by the generator x and it has 
the same orientation as the fundamental region. A light region is 
transformed into a dark region with reversed orientation by 
reflection in a red curve corresponding to the generator c. The 
portrait really consists of only two types of regions, Light 
regions and Dark regions. Unfortunately, the generator x moves 
a light region to an adjacent light region and the same for dark 
regions. We would not be able to distinguish two adjacent light 
regions from each other or two adjacent dark regions from each 
other without the L1, L2 and D1, D2 distinction. Therefore, we 
keep the action on the orientation from the original group . Figure 4 - Simplified P)2,8,3(FT 48 graph 
This gives a portrait with 4 different types of shaded regions.      

 
4. The Group of Symmetric Genus Two 

 
The group P48 has presentation 1)()(|, 31323 === − SRRSSRSR . It is a group of order 48 and it 

is the image of . Therefore, the polygonal diagram in figure 2 is folded on itself. Each edge on 
the rim is the same as another edge 
somewhere else on the rim of the 
diagram. The edges which are 
identified are given in figure 3. The 
symmetric genus of P

)4,3(HT

48 is two [4, 
page 128]. The surface where P48 is 
drawn is divided up into 96 regions 
by . The drawing of the 
group, P

)2,8,3(FT
48, has 48 faces, 72 edges 

and 22 vertices. Thus it has Euler 
characteristic -2 and hence can be 
drawn on a surface of genus 2. Its 22 
vertices are divided up into 6 
vertices of degree 16 and 16 vertices 
of degree 3. Each vertex of degree 
16 is connected by two edges to 4 
other vertices of degree 16. The 
remaining 8 edges connect to 8 
different vertices of degree 3. Each 
region of the portrait of P48 is 
bounded by red and black lines. The 
blue lines separate each region into 
two parts for ease of viewing, as 
explained above.  If all of the black  

 Figure 5 - Genus two surface divided into 16 regions         lines inside each "triangle" of red 
              lines are deleted, you combine 3 
faces into one face, delete 3 edges and lose one vertex. The Euler characteristic is unchanged by this 



operation. If you do this for every "triangle" of red lines in the graph, you obtain a simplified graph with 
the same Euler characteristic. This graph is shown in Figure 4. Thus the graph consisting only of the red 
curves can be drawn on the surface of genus two first and then the black curves can be added later. This 
simplifies the task of drawing this polygon on a genus two surface considerably. This is shown in Figure 
5. The bold curves in Figure 5 are the red curves on the front of the genus 2 surface and the thin curves 
are on the back of the surface. The curves appear to approach each other because they are approaching the 
sides of the surface. In fact, they approach their intersection at an angle of 45°. We can see this in the 
close up view of the model P48 on a genus two surface. This picture is displayed as Figure 6. 
 
 
 
 

 
 

Figure 6 - Portrait of the group P48 with orientation reversing actions. 
 
As we see, the portraits of small groups as a group of transformations with orientation reversing 

elements give some intriguing and esthetically pleasing drawings. The fact that they cannot be accurately 
drawn on a plane surface makes them even more interesting. 
 
 
 



 
5. Characteristics of the Simplified Graph 

 
The genus 2 graph obtained by removing all but the red curves has 16 faces, 24 edges and 6 vertices. It is 
a graph of Euler characteristic -2 and thus cannot be drawn on a surface with genus less than two. Figure 
4 illustrates a plane drawing of this graph where all points with the same label are identified. Figure 5 
illustrates the drawing of this graph on a genus 2 surface. Figure 6 is the full model with each "triangle" in 
Figure 5 subdivided into 6 "triangles" with alternating shades of the basic color. Under what 
circumstances is this simplification of the process of constructing the model possible? Clearly, in this case 
the element x which gives the group action which permutes the regions inside each "triangle" is an 
orientation preserving action. 
 The simplified model is the portrait of the index 2 extension of the quaternion group. As such, it 
is the same as Burnside's portrait of the quaternion group of order 8. The group P48 does not have a 
quotient of order 16. It is the semidirect product of a group of order 16 and the cyclic group of order 3. 
The normal subgroup of order 16 is an extension of the quaternion group of order 8. This subgroup of 
order 16 is what gives us the simplified model and the orientation preserving subgroup of this group is the 
group of quaternions. Hence our model in figure 6 is really an elaboration of Burnside's original model of 
the quaternions acting on a surface of genus 2. 
 

6. Future Research 
 
The next step will be to construct portraits of groups that act on surfaces of genus larger than 2 or 3. It 
would also be interesting to use group actions where the orientation preserving subgroup is not a triangle 
group. If the orientation preserving subgroup were a quadrilateral group, then you would expect the 
fundamental regions to be "quadrilaterals" and the portrait to be significantly different. 
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