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Abstract 
 

Three geometric transformations produced a large number of polyhedra, each originating from an initial 
polyhedron. In the first transformation, vertices were slid along edges and across faces producing nested 
polyhedra. A second transformation produced dual polyhedra, whereby edges of the initial polyhedron were 
rotated and scaled and the end points of these edges derived the dual polyhedra. In a third transformation, faces of 
an initial polyhedron were rotated and scaled producing snub polyhedra. The vertices of these rotated and scaled 
faces were used to derive other polyhedra. 
This geometric approach which derives new vertices from previous vertices, edges and faces, produced precise 
results. A CD-ROM accompanying this paper contains three animations and data for all the derived polyhedra. 
This CD-ROM can be obtained by sending me email.  

 
 

1. Introduction 
 

 While I was working at NYIT Computer Graphics Laboratory from 1980 to 1990, Haresh Lalvani 
approached me to produce precise data for an icosahedron and a dodecahedron. He was interested in 
constructing a quasi-crystal structure that contained more than 600 instances of these two polyhedra. 
Being an architect, he imagined exact representations. These polyhedra needed to be precise in their 
spatial coordinates when so many polyhedra were assembled. Any error would have a tendancy to 
accumulate significantly and prevent the structure from registering all the polyhedra into their respective 
locations.  
 
 I searched for such spatially accurate polyhedra in [1], and [2]. Unable to find precise vertex 
coordinates, I undertook to develop such polyhedra and subsequently developed other polyhedra: 
Platonic, Archimedean, Prisms, Anti-Prisms and their Duals. I began by positioning the vertices of a 
tetrahedron at the corners of a unit cube. These vertices were represented by zeros and ones, making them 
precise. 

 
 

2. Vertices are Translated Along Edges & Across Faces to Derive Nested Polyhedra 
 

From the vertices of the tetrahedron in Figure 1a, a nested set of polyhedra were derived. I could 
derive a truncated tetrahedron in Figure 1b by translating vertices 1/3 of the length along the edges of the 
initial tetrahedron. This translation is defined computationally by taking the two end points of the edge, 
adding the coordinates together, and dividing by the ratio of the proportion along the edge. This very 
simple computation produced very little error. 
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By continuing to translate vertices to the halfway point along the initial edges, I derived an 

octahedron, Figure 1c. Now I turned the direction of translation from along the edges to across the face to 
derive other polyhedra. When I translated the vertices 1/5 the distance from the mid-edge points to the 
opposite vertices, another truncated tetrahedron was produced Figure 1d. When the translated vertices 
reached the mid-faces or 1/3 the distance from the mid-edge points to the opposite vertices, a dual 
tetrahedron was derived, Figure 1e. In Figure 2 these five polyhedra are displayed individually and then 
nested together. 

 
 

                                                                     
           a                              b                             c                             d                              e 

 
Figure 1: Tetrahedron (a & e), truncated tetrahedron (b & d), octahedron (c). 

 
 

 
                                a                    b                    c                   d                    e                    f 

 
Figure 2: Tetrahedron (a & e), truncated tetrahedron (b & d), octahedron (c), & nested (f). 

 
 I then applied this nesting concept to an octahedron. I translated vertices to the 1/3 point of edges 
to derive the vertices of a truncated octahedron. When vertices were at the 1/2 point of the edge a 
cuboctahedron was derived. Again, I translated vertices across the faces. When vertices are at 1/5 that 
distance a truncated cube was derived. When the vertices were at the mid-faces a cube was derived. These 
five polyhedra can be viewed individually or nested in Figure 3. 
  
 

 
                                a                    b                    c                   d                    e                    f 
 
Figure 3: Cube (a), truncated cube (b), cuboctahedron (c), truncated octahedron (d), octahedron (e) & nested (f). 

 
 In addition, the vertices of an icosahedron were translated along its edges and faces to derive a 
truncated icosahedron, an icosidodecahedron, a truncated dodecahedron and a dodecahedron. When I 
initially performed this work, I utilized Coxeter’s [1] formulation for the coordinate values of vertices to 
generate an icosahedron. Five polyhedra and a nesting of these polyhedra derived from an icosahedron 
are illustrated in Figure 4. 
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                                       a                    b                   c                   d                    e                    f 

  
Figure 4: Dodecahedron (a), truncated dodecahedron (b), icosidodecahedron (c), truncated icosahedron (d), 

icosahedron (e) & nested (f). 
 

3. Platonic & Some Archimedean Polyhedra 
 

 The Platonic and Archimedean polyhedra produced above were the only polyhedra able to be 
derived from such a simple translation of vertices along edges to their mid-point and across faces to their 
mid-point. 

 
4. Translating Vertices Along Edges and Across Faces to Square Faces 

 
 A slightly new concept was used to translate vertices along edges, and then translate vertices 
across faces to form square faces. This concept was applied to a cuboctahedron and an icosidodecahedron 
to derive truncated and rhombic polyhedra. The vertices were translated 1/3 of the distance along edges to 
form a polyhedron that was topologically equivalent to a truncated cuboctahedron. However, the 
truncated faces formed were rectangles, not squares. Figure 5(a-d) are such derived polyhedra with 
rectangular faces. These rectangles were the result of each vertex having two triangles and two squares. 
The new edges derived from the triangles differ in length from the new edges derived from the squares; 
hence the rectangles. 
 

To transform these rectangles into squares, I used the mid-point of each of these rectangles and 
translated vertices of rectangles toward these mid-points to form squares. Figure 5(e-h) are such 
polyhedra with square faces. Consequently, a truncated cuboctahedron Figure 5e and a 
rhombicuboctahedron Figure 5f were derived from a cuboctahedron, and a truncated icosidodecahedron 
Figure 5g and a rhombicosidodecahedron Figure 5h from an icosidodecahedron. 

 

  
          a                    b                   c                    d                                  e                   f                     g                   h 

 
Figure 5: Rectangle faces (a, b, c, d), square faces (e, f, g, h). 

 
5. Rotating and Scaling of Edges to Define Dual Polyhedra 

 
 I next investigated the transforming of edges to see what would result. The axes of rotation were 
defined from the center of a polyhedron orthogonal to points on edges. I rotated each edge about each of 
these axes. The angle of rotation was 90 degrees, so that the rotated edges were orthogonal to the initial 
edges. For example, I rotated the six edges of a tetrahedron in Figure 6a, by 90 degrees to form another 
tetrahedron in Figure 6c. This second tetrahedron was the dual of the initial tetrahedron. For the 
tetrahedron there is no scaling of the rotated edges. The end points of the rotated edges intersect exactly at 
the vertices of the dual tetrahedron. 
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A dual relationship for two polyhedra is an interchange between faces and vertices. That is, faces 
of an initial polyhedron become vertices in the dual polyhedron, and vertices in the initial polyhedron 
become faces of the dual polyhedron. When an initial polyhedron and dual are displayed simultaneously it 
is referred to as a polyhedron compound. 

 
Figure 6 (a-c) are rotating edges without scaling for tetrahedron. Figure 6 (d-f) are edges both 

rotated and scaled for a truncated tetrahedron and a triakis tetrahedron. Figure 7 (a-f) are two sets of an 
initial polyhedra (a&d), polyhedra compounds (b&e) and polyhedra duals (c&f). 

 
 

                                     
                a                            b                            c                                d                            e                            f 
    

Figure 6: Edges of a tetrahedron (a-c), a truncated tetrahedron, & a triakis tetrahedron (d-f). 
 
 

       
              a                           b                           c                                        d                            e                          f 

 
Figure 7: Tetrahedron (a & c), composite (b), truncated tetrahedron (d), composite (e) & triakis tetrahedron  (f). 

 
 

6. Dual Polyhedra for Platonic, Archimedean, Prisms and Anti-Prisms 
 

 The tetrahedron is a self dual. Therefore, scaling was not required to derive its dual when using 
the concept of rotating edges for duals. The rotating and scaling edges for duals is a generalized concept 
for deriving dual polyhedra. The scaling of the edges is relative to the point where the axis of rotation for 
the edge and that edge intersect. In most cases there are two scale factors, one for each half edge. A 
precise scaling value was derived by computing the distance between the end points of edges that were 
rotated by 90 degrees about their axis of rotation. Each half edge with a like configuration of adjoining 
polygons had the same scale factor. Once the scale factors were applied for all half edges, the rotated 
edges intersected precisely in a single vertex of the dual polyhedron. 
 

This concept of simultaneous rotation by 90 degrees and scaling of half edges was applied to 
Archimedean, Prism and Anti-Prism to define all of their dual polyhedra. 

 
 

7. Rotating and Scaling of Faces to Derive Snub Polyhedra 
 

 After translating vertices and rotating and scaling of edges, simultaneously rotating and scaling 
faces was investigated. The axis of rotation for transforming faces was a line from the center of the 
polyhedron to a point on a face where the line was orthogonal to the face. Scaling of the faces was 
performed with respect to the point where the axis of rotation intersected the face. There was only one 
scale factor used for all faces that were transformed. 
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 The four faces of a tetrahedron, as in Figure 8a, were rotated by 60 degrees and scaled by ½ to 
derive the six vertices of an octahedron, as in Figure 8b. This was a second method of deriving an 
octahedron from a tetrahedron. Note that the tetrahedron has vertices with three fold symmetry and an 
octahedron has vertices with four fold symmetry. 
 
 

8. A Snub Tetrahedron is An Icosahedron 
 

 Starting with a tetrahedron as in Figure 8a, I used the four triangle faces, consisting of twelve 
vertices, rotated them by 60 degrees, and scaled them by ½. These vertices formed an octahedron, as in 
Figure 8b. When the vertices of these newly transformed triangles were rotated and scaled further, they 
appeared to move along the edge of the triangle of the octahedron, to a point, where the ratio of the two 
pieces of this edge were in the golden mean ratio to form the vertices of an icosahedron Figure 8c. 

 
 

                                     
         a                                         b                                          c 

 
Figure 8: Tetrahedron (a), Octahedron (b) and Icosahedron (c). 

 
Faces of a tetrahedron could be rotated either clockwise or counter-clockwise to produce an 

identical octahedron. However, when the faces of this octahedron were rotated in a clockwise direction an 
icosahedron Figure 9c was derived. When these vertices were rotated in a counter-clockwise direction a 
icosahedron with a different orientation Figure 9d was derived. When the Figure 9c and Figure 9d are 
displayed simultaneously with Figure 9b, the direction of the rotation can be more easily seen. When 
Figure 9a is added to Figure 9e, the results can be seen in Figure 9f showing a full set of polyhedra. 
 
 

 
                                       a                   b                    c                    d                    e                    f 

 
Figure 9: Tetrahedron (a), Octahedron (b), Chiral Icosahedron (c&d), & Snubs (e&f). 

 
 

9. Two Snub Polyhedra Complete the Set of Archimedean Polyhedra 
 
 Six faces of a cube were scaled by ½, and rotated by 45 degrees for vertices of a cuboctahedron . 
These six faces were further rotated and scaled for the twenty-four vertices of a snub cube. Similarly, the 
twelve faces of a dodecahedron were rotated by 36 degrees and scaled by ½ to form the vertices of an 
icosidodecahedron. These twelve faces were further rotated and scaled to form the sixty vertices of the 
snub dodecahedron. This ployhedron is also known as a snub icosahedron or a snub icosidodecahedron.  
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10. Statistical Study of Data Model Vertices 
 
 When I computed the data for Platonic, Archimedean, Prism, Anti-Prism and their Dual 
polyhedra, I printed 18 decimal digits tables for the double precision, floating point numbers. The tables 
consisted of the three coordinates of each vertex, a radius for each vertex, three coordinates of the mid-
edges point, a radius for each mid-edge, three coordinates of the mid-faces point, and a radius for each 
mid-face point. I also computed and printed all edge lengths between vertices and all dihedral angles 
between faces. 
 
 

11. Conclusions 
 
 When Haresh positioned the last polyhedron in his quasi-crystal structure, it registered with the 
previously positioned polyhedra without significant error. This result reinforced the precision of the 
polyhedra derived with this method of such simple computation. From the printed tables I could visually 
observe that the data was showing accuracy to 16 digits and occasionally 17 digits. Since I could observe 
their accuracy, these polyhedra exhibited no directional error and had the potential to be applied to many 
problems containing polyhedra. Throughout my derivations of all these polyhedra, I used consistent 
geometric relationships between polyhedra for each of the tetrahedral, octahedral and icosahedral 
families. All vertices simultaneously moved along edges by a constant value, all half edges were 
simultaneously rotated and scaled by constant values, and all faces were simultaneously rotated and 
scaled by constant values. 
 
 In my work with transformations the concept of moving vertices along edges and across faces for 
nesting polyhedra was illustrated using transparency and color for different polyhedra. When animated, 
these nested polyhedra were seen to have their vertices coincident with the edges and faces of an initial 
polyhedron. Also, the concept of edge rotating and scaling for dual polyhedra was also illustrated using 
transparency and color for different polyhedra. Edges of the initial polyhedron intersected with edges of a 
dual polyhedron. In addition, they were orthogonal to each other and this relationship could be seen very 
clearly. 
 
 Finally, I used transparency and color for the different polyhedra  to illustrate  face rotating and 
scaling for snub polyhedra. The tetrahedron, with an octahedron inside, and an icosahedron inside the 
octahedron, clearly shows a relationship between vertex symmetry of three, four and five in a single 
composite Figure 9f. Since the golden mean ratio along the edge of the octahedron existed there was a 
serendipitous nature to such a precise relationship. This relationship is perhaps more subtle than can be 
easily seen by most viewers. 
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