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Abstract

At Bridges 2001, Zongker and Hart [8] gave a construction for “blending” two polyhedra using an
overlay of dual spherical nets. The resulting blend, they noted, is the Minkowski sum of the original
polyhedra. They considered only a restricted class of polyhedra, with all edges tangent to some common
sphere. This note defines spherical duals of general convex polyhedra and proves that the Zongker/Hart
construction is always valid. It can be used visually, for instance, to “morph” from any polyhedron to
any other.

Polyhedra and their spherical duals

The notion of dual convex polyhedra, like the cube and octahedron, or the dodecahedron and icosahedron, is
familiar. The faces of the polyhedrdncorrespond to vertices of its dual and vice versa. The combinatorics

are thus clear, but in general (moving away from the Platonic solids) it is not always clear what geometry to
give the dual. Indeed, most useful for us will be a dual which is itself not a convex polyhedron, but instead

a network drawn on the surface of a sphere. We still consider it a dual of the original polyHetherause

it does have the dual combinatorics: a node for each fade ah arc for each edge @?, and a region on

the sphere for each vertex.

The nodes of this spherical dual are easy to find: eachffaxe” has an outward unit normal vectey.
Sincev, is a unit vector in space, it can be viewed as a point on the unit sphere. We can think of this
correspondance as follows: put a flashlight downfoauch that its base rests flat gn Its beam will then
shine outwards in the normal direction, and it will hit the celestial sphere in the paint

Now consider an edgeof P. It lies between some pair of fac¢gsand f” of P. If our flashlight is onf,
and we tip it slowly across the edgaowardsf’, the beam will trace out an arc in the celestial sphere. This
will be the geodesic or great-circle agefrom v, to vy. Supposel, is the edge vector af (the difference
between the endpoints ej. Then the arg). lies exactly in the great circle perpendiculardo (We can
check this as follows: the face normaisandv/, being the endpoints of., both lie on this circle, but they
are also both perpendiculardp.) The length of the arg, is exactly the exterior dihedral angle Bfalonge
(the angle between; andvy).

The nodes and arcs we have described form the network on the sphere that wesgikteal dualP
of P. (By analogy to smooth surfaces, where the normal vecisigiven by the so-called Gauss map, this
spherical dual is sometimes also called the Gauss imagfe)dfhe networkP cuts the sphere into regions
corresponding to the verticesof P. Indeed, the regiop, associated to a vertaxis the one bounded by
the arcs). corresponding to the edgesncident tow.

Let us recall the definition cdupporting plane A supporting plane through a poipton P is a plane
such that all ofP lies to one side (or in the plane). At a point within a fgGe¢he unique supporting plane is
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the one with normad . At any point along an edge there is a one-parameter family of supporting planes;
their normals are the points along the grc At a vertexwv there is a two-parameter family of supporting
planes: holding our flashlight at, we can tip it to be perpendicular to any of these planes. The normal
directions (in which the flashlight then shines) fill out the regignThe area of this regiop, of P is what
one might call theexterior solid angleof P atv or theGauss curvaturef P atv. N

Note that, by the combinatorial duality, argon facef of P corresponds to a-valent nodev; in P:
indeed there are exactlyways to tip our flashlight offf. Similarly, if k edges; meet at the vertex of P,
the the regiorp, on the sphere hadssides, namely thé arcs,, .

We can consider two ways in which a polyhedron can degenerate to be lower-dimensional. First, a
planarn-gon in space, with its two sides thought of as two faces (with opposite normals), fatimsdion
its spherical dual has two antipodal nodes;, connected by: arcs. Second, a line segment in space has
no faces but has an edge with vector, shyits spherical dual has no nodes, but consists of the entire great

circle perpendicular td..
/\\
O

~O—

Figure 1: The spherical dual of a cube (left) is a network of three perpendicular great circles (center) which could

be called a spherical octahedron. (Our spherical figures were drawn with the program “Spherical Easel” [1].) The six
nodes of the network are the normals to the six cube faces; the twelve arcs correspond to the cube edges; these cut the
sphere into eight congruent triangular regions corresponding to the cube vertices. The same network is also the dual
of any rectangular parallelepiped (right). We can introduce labels on the arcs of the dual, recording the edge lengths
of the original polyhedron, to distinguish these possibilities.

Recovering a polyhedron from its spherical dual

As a very simple example, the culiéand its dualC' are shown in Figure 1. The dual consists of three
great circles on the sphere, in the coordinate planes. These meet at six nodes (the north and south poles plus
four along the equator) corresponding to the the cube’s face normals. Just as the usual dual of a cube is an
octahedron, this network' could be called as a spherical octahedron; indeed it is the radial projection of a
regular octahedron to its circumscribed sphere.

Given this dualC, can we reconstruct the original cub& We know that if any polyhedro# has
dual C, then P must have six faces, with opposite pairs parallel to the coordinate planes. But any (axis-
aligned) rectangular parallelepiped satisfies this conditions, and will indeed have this same dual letwork

In general, given a spherical netwakkwith convex regions, we can look for polyhedfawith dual V.
Any such polyhedron will be the intersection of halfspaggs one for each node of N. We know that,,
will be bounded by a plang, with unit normalv, but the location of this plane is not usually uniquely
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determined. Given a polyhedrdh we can move its faces inwards or outwards a bit, keeping them parallel.
As long as we don't move any face so far that the combinatori¢s cfianges, the result is new polyhedron
with the same spherical du&l.

Note, however, that there are also rigid examples, like the octahe&drohFigure 2. It is uniquely
determined (up to homothety) by its spherical d@alsince its combinatorics would change immediately,
no matter how little we moved any face.

Figure 2: The octahedron (left) is uniquely determined by its spherical dual (right), since moving any face inwards
or outwards would change the combinatorics. The ddah spherical cube, has eight nodes (in the body-diagonal
directions) and twelve arcs, dividing the sphere into six congruent square regions. Here, the only legal edge-labelings
use equal labels on all twelve edges.

In general, though, to recovd? from P we need some further information. One possibility would
be to record, for each nodg, the distance from the origin to the plane of the fgceThis would make
the spherical dual carry exactly the information of the so-catlegport functionof P. That is, for any
direction we would know the distance from the origin to the supporting plare itothat direction. It is
well-known that any convex body is determined by its support function. (See for instance [7].) Given a
spherical network, the various polyhedra with that dual correspond to the different labelings of the nodes.
An n-faced polyhedrorP is part of a large family with duab; any small adjustment of the labels onP
would lead to a particular member of this family.

Recent work of Fogel and Halperin [3] develops an exact algorithm for computing Minkowski sums
based on spherical duals. (Actually, for computational efficiency, they project the dual radially onto a cube.)
In order to be able to recover polyhedra from the dual networks, they store quite redundant information:
namely, for each region of the dual, the three coordinates of the original vertex in space.

Zongker and Hart [8] suggest yet another way to encode the extra information needed to defeérmine
from P. They record, for each ang., the length/, of the corresponding edge Since a polyhedron has
more edges than it has faces, this leaves us with more labels than we need. That is, not every edge-labeling
onP corresponds to a polyhedron; instead there are necessary conditions on these labels. However, we will
show that certain constructions (in particular the overlay of two labeled dual nets) always do give correct
labelings that correspond to polyhedra.

To understand the conditions on the labels, think first about a singlg éem v, to v/, with label/.

It must correspond to an edgeof length/, in the direction perpendicular tor andv,. That is, the edge
vectord, is known to be the vector of length in the direction of the cross produef x v;. Note that
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this direction lies tangent to the spherevaf perpendicular to the direction in which the agcleaves the
nodev;.

Of course, because the fagds a closed polygon, the edge vectdgsaroundf must sum td). Equiv-
alently, think of the weightd. as tensions in the areg. The closure condition arounfl becomes the
following condition atv: the tensions in all the areg. sum to0. (Since this is a vector equation in the
tangent plane aty, it really represents two linear conditions on the incident labels there.)

Minkowski sums

Given two polyhedrad and B, their Minkowski sumA + B := {a+b : a € A,b € B} is again a
polyhedron. It has faces parallel to the faces of the original polyhedra, and additional faces which are
parallelograms generated by one edge frdrand one fromB.

As above, we will allow a segment in space to count as a degenerate polyhedron. Then the Minkowski
sum of two segments is a parallelogram, the sum of three (linearly independent) segments is a parallelepiped,
and in general the sum d&f segments is a special kind of polyhedron called a zonohedron. Unless two
of the segments are collinear, each edge of the zonohedron is parallel and equal in length to one of the
original segments. Unless three of the segments are coplanar, the faces of the zonohedron are parallelograms.
Figure 3 shows two zonohedra which have the same duals as certain Archimedean solids.

Figure 3: The zonohedrofl” (left) is a “stretched” truncated octahedron. Its spherical dual (center) is obtained by
extending the arcs of the spherical cubén Figure 2 until we have six full great circles. The truncated octahedron
would have equal weights on all dual arcs; we obtain the stretched vérdigrvarying the weights. The stretched
truncated cuboctahedron (right), also a zonohedron, is the Minkowski stimndth the box of Figure 1(right). Its

dual (not shown) is obtained simply by overlaying their two duals.

We have noted that the spherical dual of a segment should be taken as the great circle perpendicular to
this segment. If a zonohedrdhis the sum ofk segments;, then its dual is the great-circle arrangement
on the sphere consisting of the correspondingreat circles;. Each great circle in this arrangement is
divided into a number of subarcs by its intersections with the other circles; these arcs correspond to a family
of parallel edges (called a zone) é@n To recoverZ from the dual, we just need to know the length of the
edges in each zone. But that is the same as the Igngttthe original segmen;. Thus, to properly label
the dual of the Minkowski sum, we put the laldelon each segment of the great cirele

The observation of Zongker and Hart [8] was that this overlay method works to produce Minkowski
sums in general. Supposéand B are two polyhedra, with labeled spherical dudlsind B. Then we
construct a spherical network by overlaying A andB simply drawing them both on the same sphere,
inserting a new node wherever arcs cross. Eachy afcl is part of an arc from eithed or B, and inherits
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the label of that arc. In excpetional casesyill lie along parts of arcs from boti and B, in which case it
gets the sum of those two labels.

The analysis of this construction in [8] was limited to the special case whemed B were each mid-
scribed around some sphere (that is, had all edges tangent to that sphere). Here we show that, in fact, it
works in complete generality.

Generically, the nodes in the overlay netwdtleither will be nodes frond or B or will arise where an
edge ofA crosses one oB. In the first case, the node and its incident arcs and their labels are exactly the
same as seen iA or B, so the closure condition is satisfied. In the second case, thertoatefour incident
arcs. They come in two opposite pairs, with equal lalsetm either pair. Clearly, this node is the dual of a
parallelogram, and the closure condition is satisfied by symmetry.

_In special cases, a node Afmay lie exactly on an arc or node of. But then the closure condition
in P is just the sum of the closure conditions from these two overlapping nodes. The case where ah arc of
(partially) overlaps an arc aB also causes no problems, as long as we have used the sum of the original
labels on the overlap, as specified above. N

Since the closure conditions are satisfied everywhere, the labeled ndtvemés correspond to a poly-
hedronP, the Minkowski sum ofd and B.

Connections and applications

This construction could be used to morph between any two convex polyHeainal B. For timet ranging
from 0 to 1, we would use the weighted suf := (1 — ¢t)A + tB. These intermediate polyhedra all
have the same spherical dua) obtained by overlaying the dualsand B. All we need to do as varies is
to linearly interpolate the labels.
As an example, consider a symmetric pattern of great circles drawn on the sphere as in Figure 4, each
tilted slightly from the equator. It is the dual to a so-called “polar zonohedron” (see [2, 6]). Suppose we

Figure 4:The symmetric pattern of great circles (left) is the spherical dual of a polar zonohedron like the one shown
(right). Such a zonohedron is by definition generated by segments equally spaced around a cone.

place two different polar zonohedra in space with their axes perpendicular. Morphing between them the
results in the sequence shown in Figure 5.

Aside from zonohedra, another interesting class to consider for this duality construction is deltahedra.
A deltahedron is a polyhedron with equilateral-triangle faces. Its dual is then a network of great-circle arcs
meeting in threes at equdl?0°) angles. Such a network is reminiscient of a two-dimensional bubble cluster,
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Figure 5:The polar zonohedra at left and right are generated by segments equally spaced around a cone. They have
been placed with perpendicular axes. In the middle we see two intermediate stages of the morph between them.

and indeed the eight possible such networks describe the only candidate singularities for three-dimensional
bubble clusters. These ideas generalize to arbitrary higher dimensions [5] where the classification of such
soap-film singularities is not yet complete. N

From a more abstract point of view, our spherical dbalith arcs labeled by edge lengths is simply the
generalized mean curvature measure of the polyheBronthe sense of Minkowski mixed volumes. (See
for instance [4].) The overlay construction is then simply explained by the known fact that such measures
are additive under Minkowski sum. It seems to be an open problem in general, however, to decide which
measures on the sphere can arise as the generalized mean curvature of some convex body.
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