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Abstract 
 

Polyhedral transformation software continuously produced polyhedron. In other words, for different inputs, a 
different polyhedron was output. For some, the output was a Platonic or Archimedean polyhedron. The 
transformation was modeled as a fundamental region of a polyhedron, and when polygons from a fundamental 
region were combined with symmetry transformations of reflections and rotations, a complete polyhedron was 
formed. These complete polyhedron originated from the tetrahedral, octahedral, and icosahedral families. With the 
use of animation, the polyhedron were transformed smoothly and continuously from one polyhedron to another. 
For example, an icosahedron was transformed into a dodecahedron. 

 

1. Introduction 
 

 In 1982 I attended an exhibit by Haresh Lalvani at Pratt Institute in Brooklyn, New York. 
Haresh showed his work on polyhedral transformations. Many polyhedron models were 
displayed along with words and diagrams describing the transformations. This work appeared in 
his Ph.D. dissertation completed with Buckminster Fuller at the University of Pennsylvania [1]. 

He exhibited a polyhedral transformation he referred to an explosion-implosion. In this 
paper I will start with an example of an explosion-implosion. I will follow this example by 
describing a polyhedron’s fundamental region, which is a minimal region for a polyhedron 
bounded by symmetry planes [2, p. 63]. I will describe input, output and an implementation for 
software to model explosion-implosion. This implementation includes examples of polyhedron 
referenced by the eight vertices of a unit edge reference cube. A ten minute animation 
accompanies this paper to show the continuous three-dimensional nature of explosion-implosion. 
 

2. Explosion-Implosion Example 
 

Expolsion-implosion applies simultaneously to every vertex, edge, and face of a polyhedron. An   
explosion-implosion example transforms  an icosahedron,   in  Figure 1a, to a dodecahedron in 
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Figure 1: Icosahedron (a), rhombicosidodecahedron (c), and dodecahedron (e). 
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Figure 1e, through a rhombicosidodecahedron in Figure 1c. The intermediate polyhedron, in 
Figure 1b, has pentagonal faces that are explosions of the icosahedron vertices. Simultaneously 
occuring with these explosions are explosions of the edges of the icosahedron into rectangular 
faces, in Figure 1b. These rectangular faces continue to explode until they become square faces 
of a rhombicosidodecahedron, in Figure 1c. Now the implosions start where these square faces 
become rectangles and the triangles become smaller. At the same time, pentagons are exploding 
to become larger, in Figure 1d. The implosions continue until the rectangles have become edges 
and the triangles  become vertices, resulting in the dodecahedron, in Figure 1e. The edges of the 
icosahedron are orthogonal to the edges of the dodecahedron and the rectangles, in Figure 1b, 
are orthogonal to the rectangles in Figure 1d. Explosion-implosion produces unit edge 
polyhedron. Thus, both the icosahedron and the dodecahedron have unit edge lengths. The 
rhombicosidodecahedron, an Archimedean polyhedron, is an intermediary of this   explosion-
implosion. As a result, it has edge lengths of ½. The polyhedron, in Figure 1b, 1c, and 1d, are all 
topological equivalents of each other. Explosion-implosion can be seen in an accompanying 10 
minute animation 
 Explosion-implosion uses a unit edge reference cube, in Figure 2. Each point in this 
reference cube refers to a different polyhedron. The three individual coordinates of a reference  
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Figure 2: A unit edge reference cube of tetrahedral (a), octahedral (b), icosahedral (c) families. 

 
point are equal to the three different edge lengths of the derived polyhedron for that point. For 
example, the point (0,1,0) refers to a unit edge icosahedron, in  Figure 2c, and (1,0,0) refers to a 
unit edge dodecahedron. Vertex (0,0,0) is a reference point for a null polyhedron. Vertices 
(0,0,1), an icosidodecahedron, (1,1,0), a rhombicosidodecahedron, (0,1,1), a truncated 
icosahedron, (1,0,1), a truncated dodecahedron and (1,1,1), a truncated icosidodecahedron, are 
all polyhedron with unit edge length. The polyhedron, in Figure 1c, has a reference point of 
(½,½,0) and an edge lengths of ½. Explosion-implosion in this paper produced polyhedron from 
tetrahedral,  Figure 2a, and octahedral families,  Figure 2b, [1, pp. 9,10], and additionally from 
the icosahedral family, in Figure 2c.  
 
 
 
 



3. Fundamental Region of a Polyhedron. 
 
A fundamental region of a tetrahedron, in Figure 3a, was defined by three vectors Vv, Ev, and 
Fv, which originate at the center of the tetrahedron, Opt. Vector Vv terminated at a vertex Vpt. 
Vector Ev terminated at an edge E in a point Ept and is orthogonal to that edge. A third vector 
Fv terminated orthogonally to a face F at point Fpt. The three vectors Vv, Ev, and  Fv were 
equal to the radii of an outer sphere of its vertices, the mid sphere orthogonal to its edges, and the 
inner sphere orthogonal to its faces. Figure 3b was a general fundamental region with three 
faces Vf, Ef, and Ff, and two visible symmetry faces VOEf  and  EOFf.  A third symmetry face 
FOVf is not visible in Figure 3b. Other points of interest in this fundamental region were VEpt, 
EFpt, FVpt, and VEFpt, where face planes and side symmetry planes intersect.   
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Figure 3: Fundamental region line drawing (a) and shaded polygons (b). 

 
3. Inputs for Explosion-Implosion 

 
3.1. Symmetry Numbers for a Regular Polyhedron.    Symmetry numbers for a regular 
polyhedron, in Figure 4, refer to the symmetry of its vertices sv, the symmetry of its edges se, 
and the symmetry of its faces sf. Each of these symmetry numbers were integer inputs for 
explosion-implosion of regular polyhedron. 
 

Family sv se sf 
Tetrahedral 3 2 3 
Octahedral 4 2 3 
Icosahedral 5 2 3 

 
Figure 4: Symmetry Numbers for Families of Polyhedron. 

 
3.2. Symmetry Transformations for a Polyhedron.    A set of transformations composed of 
reflections and rotations were used to transform the faces of a fundamental region into a 
complete polyhedron. The tetrahedral family has 24 transformations, the octahedral family has 
48 transformations, and the icosahedral family has 120 transformations. 



The icosahedron of Figure 1a can be used to help understand a set of symmetry 
transformations. One triangle of the icosahedron face is composed of six sub-triangles, three 
light and three dark. Each of these sub-triangles is a face that has been transformed from a 
fundamental region.   The first transformation is a reflection of a fundamental region through a 
side symmetry plane to form a second part of the face (i.e. one light and one dark triangle). This 
part of a face can be rotated twice to form a complete face (3 light & 3 dark triangles for a 
complete triangle). This composite face can be rotated four times to form a lune of triangles from 
the top to the bottom of the icosahedron. This lune of four triangles was rotated five times to 
form a complete polyhedron. The accompanying video illustrates this constructive approach to 
building a complete polyhedron from a fundamental region. 

Explosion-implosion software contained four tables of 4x4 arrays of the values for the 
four sets of symmetry transformations. Depending on the input of the symmetry numbers, a 
different table or set of symmetry transformations was used to display that complete polyhedron 

  
3.3. A Point in a Unit Edge Cube.   A unit edge cube provides a three-dimensional reference 
space for a point whose three coordinate values pv, pe, and pf, are real inputs (0 <= pv, pe, pf <= 
1) for explosion-implosion, in Figure 2. Inputs pv, pe, and pf will produce a polyhedron with 
edge lengths equal to these three input values. 
 

4. Output from Explosion-Implosion 
 

The three faces Vf, Ef, and Ff of the fundamental region, in Figure 3b, are the output from 
explosion-implosion software. These three faces were derived by solving for seven points, Vpt, 
Ept, Fpt, VEpt, EFpt, FVpt, and VEFpt, in Figure 3b. When these three faces are coupled with 
an appropriate set of transformations, a complete polyhedron was displayed as output. Figure 1 
shows five examples of complete polyhedron output derived from a fundamental region. 
 

5. Implementation of Explosion-Implosion 
 
5.1. Concept A clear explanation of explosion-implosion polyhedral transformation can be 
illustrated as three face planes orthogonal to and sliding up and down the three symmetry vectors 
of the fundamental region. 
 
5.2. Symmerty Numbers Once symmetry numbers sv, se, sf were input, angles between 
symmetry vectors Vv, Ev, and Fv, and direction cosines for the three face planes Vf, Ef, and Ff 
were derived. These derivations appear in Coxeter [2]. A constant value for the length of a half 
edge, l, of a polyhedron was consequently provided to this software for unit edge polyhedron. 
The value of l was 0.5. 
 

5.3. Symmetry Vectors    The three symmetry vectors Vv, Ev and Fv, were combined in pairs to 
form three angles. Vectors Vv and Ev form angle φ, where Ev and Fv form ϕ, and Fv and Vv 
form χ. For this implementation some interim values were defined; pisf and pisv are examples of 
such interim values using inputs sv and sf. 
 

pisv = π/sv,  pisf = π /sf 
φ = acos( csc(pisv) * cos(pisf) ) 

ϕ = acos( cos(pisv) * csc(pisf) ) 
χ = acos( cot(pisv) * cot(pisf) ) 



5.4. Three Polyhedron from a Symmetry Family.    The length of radii for an outer sphere , a 
mid sphere, and an inner sphere were derived for each of three different polyhedron for each 
symmetry family, in Figure 5. The three polyhedron were the regular-faced polyhedron, its dual, 
and their intersection polyhedron. These radii were derived so that each of the subsequently 
derived polyhedron had a unit edge length. 
 

Family Regular Intersection Dual 
tetrahedral tetrahedron octahedron tetrahedron 
octahedral octahedron cuboctahedron cube 
icosahedral icosahedron icosidodecahedron dodecahedron 

 
Figure 5: Regular, Dual, and Intersection Polyhedron for Symmetry Families. 

 
The value of h is the sides of an equatorial polygon for the intersection polyhedron [2, p19]. 
 

pih = acos( sqrt( cos(pisv) * cos(pisv) + cos(pisf) * cos(pisf) ) ) 
 

The regular-faced polyhedron radii for its outer sphere rv, its mid sphere re, and its inner sphere 
rf, were derived as follows. 
 

rv = l * sin(pisv) * csc(pih ) 
re = l * cos(pisf) * csc(pih) 

rf = l * cot(pisf) * cos(pisv) * csc(pih) 
 

The dual of the regular-faced polyhedron radii for its outer sphere dv, its mid sphere de, and its 
inner sphere df, were deriveded as follows. 
 

dv = l * cot(pisv) * cos(pisf) * csc(pih) 
de = l * cos(pisv) * csc(pih ) 
df = l * sin(pisf) * csc(pih) 

 
The intersection polyhedron of the regular-faced polyhedron and its dual polyhedron radii for its 
outer sphere iv, its mid sphere ie, and its inner sphere if, were derived as follows. Vertex radii 
csv and csi for two polygons were first derived from vertex and face symmetry numbers [2, p3]. 
Radii for the intersection polyhedron used angles φ and ϕ from the symmetry vectors.  
 
 

csv = l * csc(pisv) 
csf = l * csc(pisf) 
iv = cot(φ) * csv 
ie = csc(φ) * csv 
if = cot(ϕ) * csf 

 
The equations for the angles between the symmetry vectors and the length of the radii for 
a regular-faced polyhedron and its dual appear in Coxeter [2]. The radii for the intersection 
polyhedron, were derived from equations appearing in Coxeter [2]. 
 



5.5. Nine Radii Multiplied By a Point Yield Three Radii.    The nine radii just derived formed 
a 3x3 matrix Rm in Figure 6. Three coordinate values pv, pe, and pf, from 3.3, formed a vector 
Pv. Multiplying Rm, by Pv, yields a vector Fv. Values v, e, and f of Fv are the radii of the outer 
sphere, the mid sphere, and the inner sphere for an output polyhedron. 
 

| v | | rv iv dv |    | pv | 
| e |  =  | re ie de | * | pe | 
| f | | rf if df  |    | pf | 
 
Figure 6: Fv = Rm * Pv 

 
5.6. Points and Planes in a Fundamental Region.    Spherical coordinates were conveniently 
formed from the three radii, and  also the symmetry angles for the spherical points Vsp, Esp, and Fsp. 
 

Spherical Angles 
vth = 0   ,  vph = 0 
eth = φ  ,  eph = 0 
fth = χ   ,  fph = pisv 

 
Spherical Points 

Vsp = [ vth , vph , v ] 
Esp = [ eth , eph , e ] 
Fsp = [ fth , fph , f  ] 

 
Spherical coordinates were chosen so that the center of the polyhedron was at the origin. 

The spherical points were converted into Cartesian points Vpt, Ept, and Fpt, in Figure 3b. 
 

Cartesian Points 
Vpt = [ sin(vth) * sin(vph) , cos(vth) , sin(vth) * cos(vph) ] 
Ept = [ sin(eth) * sin(eph) , cos(eth) , sin(eth) * cos(eph) ] 
Fpt = [ sin(fth) * sin(fph) , cos(fth) , sin(fth) * cos(fph) ] 

 
These Cartesian point coordinate values were the direction cosines for the three planes 

Vpl, Epl, and Fpl, and the three radii v, e, and f were distances from the origin. 
 

Face Planes 
Vpl vector from [ Vpt.x , Vpt.y , Vpt.z , -v ] 
Epl vector from [ Ept.x , Ept.y , Ept.z , -e ] 
Fpl vector from [ Fpt.x , Fpt.y , Fpt.z , -f ] 

 
The three points Vpt, Ept, and Fpt were combined with the origin point Opt, to determine 

vectors for the three symmetry planes VOEpl, EOFpl, and FOVpl. 
 

Symmetry Planes 
VOEpl vector from [ Vpt , Opt , Ept ] 
EOFpl vector from [ Ept , Opt , Fpt ] 
FOVpl vector from [ Fpt , Opt , Vpt ] 

 



5.7. Points for Faces of the Fundamental Region.    The six planes, Vpl, Epl, Fpl, VOEpl, 
EOFpl, and FOVpl, intersect in sets of three to yield the seven points for faces of the 
fundamental region. Three of these seven points, Vpt, Ept, and Fpt, in Figure 3b, are at the 
corners of the fundamental region in line with the symmetry vectors Vv, Ev, and Fv. These three 
points are at the intersection of two side symmetry planes and one face plane. 
 

Fundamental Region Corner Points 
Vpt from intersection of planes [ VOEpl , Vpl , FOVpl ] 
Ept from intersection of planes [ EOFpl , Epl , VOEpl ] 
Fpt from intersection of planes [ FOVpl , Fpl , EOFpl ] 

 
Three more points, VEpt, EFpt, and FVpt, are on the sides of the fundamental region. These 
three points are at the intersection of two face planes and one side symmetry plane. The seventh 
point VEFpt, is formed by the intersection of the three face planes. This VEFpt point moved 
over the interior, as well as the boundary of the fundamental region . 
 

Fundamental Region Side Points 
VEpt from intersection of planes [  Vpl , VOEpl , Epl ] 
EFpt from intersection of planes [ EpI, EOFpl , Fpl ] 
FVpt from intersection of planes [ Fpl , FOVpl , Vpl ] 

Fundamental Region Face Point 
VEFpt from intersection of [  Vpl , Epl , Fpl ] 

 
5.7. Edges in Fundamental Region.  Fundamental region edges were formed by pairs of points. 
The lengths of these three edges Veg, Eeg, and Feg, were precisely equal to the three coordinate 
values pv, pe, and pf, of reference point Ppt. 
 

Fundamental Region Edges 
Veg from points ( VEFpt , EFpt ) 
Eeg from points ( VEFpt , FVpt ) 
Feg from points ( VEFpt , VEpt ) 

Length of Edges 
pv = length of ( Veg ) 
pe  = length of ( Eeg )  
pf  = length of ( Feg) 

 

5.8. Polyhedron of Points of the Reference Cube. Now I will use points from the reference 
cube as examples for polyhedron derived from explosion-implosion.  The origin (0, 0, 0), of the 
reference cube, when multiplied by the radius matrix Rm, yields radii (0, 0, 0), for a null 
polyhedron, in Figure 2. The reference cube corners, when multiplied by the radius matrix Rm, 
yield radii vectors (rv, re, rf), (iv, ie, if), and (dv, di, df). These were the radii for a regular-faced 
polyhedron, its intersection polyhedron, and its dual, in Figure 7, and are the same as Figure 5. 
 

corner -> (1, 0, 0) (0, 1, 0) (0, 0, 1) 
radii -> (rv, re, rf) (iv, ie, if) (dv, de, df) 
family regular intersection   dual 

tetrahedral tetrahedron octahedron tetrahedron 
octahedral octahedron cuboctahedron cube 
icosahedral icosahedron icosidodecahedron dodecahedron 

 
Figure 7: Reference Cube Unit Vector Polyhedra. 



The other four corners of the reference cube, when multiplied by the radius matrix Rm, yield 
radii lengths for other unit edged polyhedron from the Archimedean family of polyhedron, in 
Figure 8. Prefix  tr is used in Figure 8 for truncated and the hedron suffix is dropped. 
 

corner -> (1, 1, 0) (0, 1, 1) (1, 0, 1) (1, 1, 1) 
tetraherdal tr tetra tr octa tr tetra cubocta 
octaherdal tr octa tr cubocta tr cube rhombic cubocta 
icosaherdal tr icosa tr icosidodeca tr dodeca rhombic icosidodeca 

 
Figure 8: Reference Cube Other Corner Polyhedra. 

 
Now that each of the polyhedron at the corners of the reference cube are defined, the polyhedron 
of the edges, faces, and interior of the reference cube can be considered. Along an edge of this 
cube is a polyhedron that is a combination of the polyhedron at the two corners for that edge. 
Similarly, on a face of this cube there is a polyhedron that is a combination of the polyhedron 
that are at four corners of that face. When considering the interior of the reference cube, a 
polyhedron that is a combination of the polyhedron that exits at the eight corners of the reference 
cube, is topologically equivalent to the (1, 1, 1) polyhedron. 
 

6. Conclusion 
 

Explosion-implosion software produced polyhedra that were structures in three 
dimensional space, and each polyhedron had three integer symmetry numbers for its vertices, 
edges, and faces. Each polyhedron was referenced by a 3-dimensional point from a unit edge 
reference cube. This was an interesting series of threes. 

Explosion-implosion produced unit edged Platonic and Archimedean polyhedra from the 
tetrahedral, octahedral, and icosahedral families. They were produced continuously, in that, each 
point in the unit edged reference cube produced a different polyhedron. Points that were close to 
each other in the reference cube, produced polyhedron that were very similar in their shape. 

Lalvani’s explosion-implosion polyhedral transformation was conceptually clear from his 
dissertation and his exhibit. I was able to derive a model of this concept using C code to compute 
a model and produce computer graphics animation of the result, in Figure 1. The edge length 
preserving nature of this model is an ongoing point of fascination for me. 
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