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Abstract
Siobhan Roberts met Donald Coxeter when she was a journalist  at the  National  Post and writing a profile on the
greatest living classical geometer. Shortly thereafter, she followed Coxeter to the last two geometry conferences he
would attend — at Banff, Alberta, and then at Budapest, Hungary, in 2002 for a celebration of the 200th anniversary of
the birth  of János Bolyai (1802-1860),  one of the discoverers of non-Euclidean geometry. Coxeter inspired many
mathematicians over his long career. Roberts was similarly entranced by the man and his geometry, notwithstanding
the fact that she was a geometrical innocent. Four years later, she is completing her biography of Coxeter. It is to be
published by Penguin in Canada and Walker & Company (Bloomsbury) in the United States (as well as publishers in
Italy,  Japan,  and Korea),  in the fall of 2006.   This piece is an excerpt from the introduction to the Coxeter biography.

Coxeter with one of his kaleidoscopes, circa 1960.

Whenever I dared mention I was writing a book about the man who saved geometry from near
extinction — when the topic came up at a dinner party, for instance — the conversation usually
skipped a beat or ten. Expressions around the room took on various shades of stupefaction as
people entertained flashbacks of math class anxieties, fumbling with compasses and protractors
and memorizing the Pythagorean theorem. Geometry was seared in their minds as a traumatizing
experience,  a  subject  enthusiastically  abandoned,  and as  a  result  people  branded  themselves
“anti-geometry,” or at the very least, “geometraphobes.” The conversation resumed only when
one brave individual broke the silence with some variation on this rejoinder: “This guy saved
geometry?!? WHY, on Earth, did he do that? He would have saved us all a lot of misery if he had
let it die!”   



I came across a more reassuring sentiment one weekend while visiting my sleepy hometown
in eastern Ontario. I was driving down the main drag, a cultural promenade of fast food chains
and car dealerships, when the billboard at the Di$count car lot caught my eye. It said, with a few
letters slightly askew: 

“WITHOUT GEOMETRY LIFE IS POINTLESS”

This is the rub with geometry — the study of points, and lines and shapes in space. We no
more notice it than we notice the curve of the earth, yet if you take a closer look, geometry pops
up where you least expect. It bids an invitation to a hypertext reality, a land illuminated with
shapes and patterns,  symmetries and reflections — geometry is everywhere and its  impact  is
infinite. Geometric algorithms produce the computer-designed curves of a Mercedes-Benz, and
films like  The Incredibles  by Pixar Animation. It’s in the molecules of our food and drugs —
observed under a stereomicroscope, the spearmint molecule is the exact symmetric reflection of
the  caraway  molecule;  and  Thalidomide,  the  pill  designed  to  prevent  morning  sickness  in
pregnant women, proved so damaging only when it  was ingested at bedtime and the sleeping
hormones of the female body flipped the original structure of the drug into its mirror opposite,
which was untested and thus caused unexpected birth defects. 

My first experience with geometry in Grade Six didn’t make me either phobic or a precocious
devotee. I was fond of my geometry kit (boys especially liked the compass because it could be
contorted to look like a gun) and as a result I did well in math class that year. So well that I
skipped Grade Seven math and went on to take all the math courses I could in high school. When
university  came I flipped the  arts-or-sciences  coin  for  my field  of study and enrolled  for  an
obsolete BA in history. I gave mathematics nary another thought, until I came across the man
who saved geometry, one Donald Coxeter. 

When  I  first  met  Coxeter,  there  were  a  number  of  qualities  about  him that  quickly  and
thoroughly drew me in. It was equal parts the man, age 95, at once an absent-minded (at that age,
anyway) and mastermind professor, still  operating under his own steam, though fortified by a
bedtime elixir of Kahlua coffee liqueur, peach schnapps, and soy milk; and it was Coxeter the
mathematician, muse to M.C. Escher and Buckminster Fuller. Escher had long been looking for a
way to convincingly portray infinitely, and his mental block was broken when he set eyes upon
one of Coxeter’s geometric illustrations. Thereafter he credited as the inspiration for his Circle



Limit  III  drawings,  and  when  he  was  working  on  them  Escher  was  known  to  say,  “I’m
Coxetering today.”

And Buckminster Fuller — Bucky as Coxeter called him —dedicated his book Synergetics,
Explorations in the Geometry of Thinking [1] to Coxeter with this high praise:

By virtue of his extraordinary life’s work in mathematics,
Dr. Coxeter is the geometer of our bestirring

twentieth century, the spontaneously acclaimed
terrestrial curator of the historical

inventory of pattern analysis.
I dedicate this work with particular esteem for him

and in thanks to all the geometers of all time
whose importance to humanity

he epitomizes.

Coxeter considered this dedication a bit of name-dropping, and suggested that Fuller would have
done better to consult a mathematician in the writing of the book. Nonetheless, Coxeter was a fan
of Bucky’s geodesic domes, and when Coxeter’s cottage burnt to the ground in a lightning storm,
he contemplated building a geodesic dome cottage in its place.

Coxeter’s  precocious  childhood was also quixotic  and alluring.   He won a scholarship to
Trinity  College,  Cambridge,  only  after  his  tutor  forbade  him  from  thinking  in  the  fourth
dimension while he focused on the foundations of mathematics that were on the entrance exam.
But this mathematical success came after some significant dabbling with music — both playing
and  composing.  Both  Coxeter’s  parents  were  artists,  his  mother  a  painter,  and  his  father  a
sculptor and a baritone singer. Coxeter learned to play the piano before the age of 10 when his
father’s musician friends came by the house to practice. But by this age he was also composing
scores and lyrics.  An operatic piece he called “Fairy Song” went like this:

There are fairies at the bottom of our garden,
They often have a dance on summer nights.
The butterflies and bees make a lovely little breeze,
And the rabbits stand about and hold the lights.

Did you know that they could sit upon the moonbeams
And pick a little star to make a fan
And dance away up there in the middle of the air?
Well, they can. 

Donald penned arrangements titled “Autumn” and “Devil” as part of a larger opera, “Magic,”
composed as incidental music for G.K. Chesterton’s play of the same name, even going to the
trouble of indicating where in the play his music should rise in and fade out.  Most of his pieces
were composed as Christmas or birthday gifts, and dedicated to his mother or father. Coxeter
discussed the link between his early mathematical and musical inclinations in a two-part radio
documentary, aired in 1997 on a Canadian Broadcast Corporation radio program about math and
art.  “The story goes that I, at an early age, liked to look at the numbers that were published in the
financial news because I was fond of numbers, as such. But I suppose it was connected with
music. When I met Ernest Galloway, who was a violinist and composer, a great friend of my
father, he taught me the theory of music, intervals, harmonics and so on, and showed me how to
write music,” Coxeter said, adding that these music lessons probably took place when he was six
or seven years old. “I was interested in the structure of the notes of music,” he continued. “That
was  somewhat  mathematical.  I  think  it’s  clear  that  one  has  to  regard  [music]  as  being
mathematical:  the  12  semitones  in  the  octave  and  the  8  diatonic  notes  and  how  they  are
different…The pleasure I got from writing music went over rather naturally into mathematics. I



got  the  same  kind  of  euphoria  from a  successful  piece  of  mathematical  rediscovery  than  I
formerly did in writing a piece of music.” Donald’s mother pursued an evaluation of her son’s
musical talent. She took him to see Gustav Holst. “I don’t know how she got to him,” Coxeter
recalled, “but she took me along and I showed him some of the music I had written, and I played
a little bit on the piano. On the whole he thought it was rather poor.” It should be noted that
during  a  recent  celebration  of  Coxeter’s  life,  his  compositions  were  dug  out,  evaluated  by
professional musicians for a performance, and about 20 per cent were more than decent enough
to be played, and in fact were quite complex and challenging arrangements. But Coxeter and his
mother received much the same evaluation from a visit to another composer C.V. Stanford. His
reply was, “Educate him first.” 

Luckily, then, Coxeter had geometry as a backup. Coxeter described geometry with his ditty
of a definition: “Geometry is the study of figures and figures” — figures as in shapes (circles,
triangles, dodecahedrons), and figures as in numbers. Coxeter’s geometry was the classical style,
a  style  in  which  hands-on and  visual  reasoning  — using  antiquated  treasures  like  triangles,
circles and polyhedrons — were the crucial tools for exploring and finding answers. And at the
very heart of Coxeter’s appreciation of shapes is the notion of symmetry. Coxeter’s geometry is
all  about  searching  for  symmetries  of  a  shape.  Prefacing  one  of  his  most  popular  books,
Introduction to Geometry [2], Coxeter states: “The unifying thread that runs through the whole
work” — and indeed his whole life and career — “is…in a single word, symmetry.”

“All  of  mathematics  is  the  study  of  symmetry,  or  how to  change  a  thing  without  really
changing it,” said Coxeter in another CBC radio program, this one in 1972 on symmetry, and
called “Mathemagic, the Ambidextrous Universe.” “It is symmetry, then, in its various forms,
which  underlies  the  orderliness,  laws,  and  rationality  of  the  universe,  and  thereby  also  the
language of mathematics.” We usually say something is symmetrical if it looks like its reflection
in  a  mirror,  or  more  generally  like  its  image  under  some  other  geometrical  operation  that
preserves measurement. Etymologically the word deconstructs to “sym,” meaning together, and
“metry,”  meaning measure,  and  implies  that  different  parts  “measure  together.”  Symmetrical
people’s left feet are as long as their right. 

Symmetry is ubiquitous. In a generalized sense, the music of Bach is symmetrical, as is the art
of Leonardo da Vinci, the metrical rhythm and rhymes of poetry, and the turrets and arches of
architecture. Symmetry, in more precise meanings, suffuses all of science — biology, chemistry,
physics, and cosmology. In physics — the study of the physical systems of nature — symmetry
exists if a change can be made to a system but yet the system remains the same before and after
the change. The change made to the system is called a symmetry operation or transformation. If
the system stays the same when subjected to a symmetry operation, the system is invariant or
symmetrical. The sphere, for example, can be rotated in an infinite number of ways and it always
remains exactly the same; a sphere is invariant under an infinite number of symmetry operations.
Astrophysicist Fritz Zwicky (1898-1974) was notorious for calling people “spherical bastards” if
he found them uninteresting and dislikeable — no matter which way he considered these people
they were equally offensive. Infinite symmetries, then, themselves are not so interesting. They
are  predictable  and  thus  hold  less  appeal  than  the  discrete  symmetries  that  Coxeter  liked
investigating.  Coxeter  used  kaleidoscopes  to  produce  figures  like  the  Platonic  solids,  and
generate  their  symmetries  through  mirrored  reflections.   He  extended  this  method  of
investigating shapes into multiple dimensions, where shapes rotate and reflect, replicating their
properties and appearance in the hall of mirrors that is hyperspace. 

A nice  initiation  to Coxeter’s  view of  the world was during one of  our  many “research”
outings, whereby I followed Coxeter around in an effort to immerse in his shapely reality.  We
attended a reception for new inductees to the Royal Society of Canada, a club of distinguished
scientists and scholars modeled after the Royal Society of London (Coxeter was a fellow of both,
in the latter in good company with alumni Albert Einstein and Sir Isaac Newton). The gathering
was  held  at  one  of  the  University  of  Toronto’s  well-appointed  mansions  in  the  city’s  riche



Rosedale  neighbourhood,  just  up the  hill  from Coxeter’s  very cubic  house that  was  perched
defiantly on a ravine. Waiting for  the formalities  to begin on this cold,  dark winter  evening,
Coxeter and I sat in the library, sipping wine, warming by the fire. Between the approach of fans
and well-wishers,  Coxeter  gestured  into  the  middle  distance  and  asked,  “What  shape  is  that
table?”  I knew it was a trick question. But I said what I saw. It was a circle. He corrected me: If I
was suspended from the ceiling looking down upon the table, then it would be a circle. But from
our coordinates across the room his perspective was slanted and transformed. He saw the table as
an ellipse, adding as a footnote that he had written a paper on this subject, titling it poetically,
“Whence does a circle look like an ellipse?”

This  was  classic  Coxeter:  ruminating  about  the  romance  of  shapes,  ellipses  and  circles,
hexagons and icosahedrons.  He delighted in the geometry of froth, sponges, honeycombs and
sunflowers. During his professorial days, Coxeter picked towering sunflowers from his garden,
stalks as tall as the man himself, and toted them along on the city bus to the university, where he
employed them as teaching devices. One student recalled that Coxeter dabbed a dot of glossy red
nail polish on each of the sunflower’s seeds, accentuating the geometrically perfect golden ratio
of the seeds’ graceful whorl. His passion for shapes was motivated exclusively, almost with an
elitist bent, by beauty. I once asked him why he kept at it, why he was still working even long
into retirement when he was paid only his pension? “No one asks artists why they do what they
do,” was his retort. “I’m like any artist. It’s just that the obsession that fills my mind is shapes
and patterns.”

It  might  seem with  his  rarified  passion  for  shapes  that  the  demise  of  Coxeter’s  classical
geometry, like the loss of, say, Latin, would pass virtually unnoticed from this world. Surely, in
an  age  of  supercomputers  and  superstring  theory,  the  crude  tool  of  classical  geometry  has
become obsolete.  Hanging around with Coxeter, I soon knew better.

As I continued to follow Coxeter around, however, to mathematics conferences in Banff and
Budapest, it became clear that the modern raison d’être for geometry was not merely as a paean
to the beauty of shapes. 

A geometer by the name of Walter Whiteley was one of the first clues.  In contrast to those
geometraphobes  at  the  dinner  party,  Whiteley,  director  of  applied  mathematics  at  York
University in Toronto, devotes a considerable amount of time and energy to pleading geometry’s
case. He wrote a paper addressing “The Decline and Rise of Geometry in  20th Century North
America,” which he delivers as lengthy Power Point presentation full of visuals. “Do these tracks
of a bicycle indicate it was traveling forward or backward?” he asks. “Do you see this face as
smiling or frowning?” It all seems more Rorschach than geometry. But Whitely calls it “learning
to  see  like  a  geometer.”  And  Whiteley  warns  that  if  geometry  had  met  its  demise,  the
consequences  would  not  be  small.  He  reckons  a  “geometry  gap”  would  haunt  Western
civilization for generations to come (for reasons we won’t get into, geometry was safer some
parts of Europe, such as Russia and Hungary). Without classical geometry, as without Mozart’s
symphonies or Shakespeare’s plays, our culture,  our understanding of the universe,  would be
impoverished and incomplete.

Having  delineated  these  parameters  on  the  pure  and  applied  importance  of  geometry  in
general,  I next had to decipher what was amassing in my mind as the mythic proportions of
Coxeter’s story. It was this awe-inspiring fact that he was introduced not only as “the world’s
greatest living classical geometer” but also, on occasion, as “the man who saved geometry.” This
savior designation seemed like a bit of hyperbole, warranting the equivalent of a mathematical
proof. My first task was to update my knowledge of geometry. I enrolled to audit Whiteley’s
course “Introduction to Geometries.” The textbook stated that “a formal proof as we normally
conceive of it is not the goal of mathematics — it is a tool — a means to an end.” A proof, it
said, was “a convincing communication that answers — Why?” Indeed, this was the query I often
faced. Why, and how, did Coxeter save classical geometry?

It  all  had  to  do  with  context  and  timing.  Right  around  the  time  Coxeter  chose  classical



geometry  for  his  career,  circa  1930,  the  visual  tradition  of  this  genre,  appreciating  circles,
triangles, and polyhedra, was exiting its golden age (the peak not being Euclid’s day, but the
nineteenth century). But as E.T. Bell  [3],  historian of all  things mathematical,  pronounced in
1940: “The geometers of the 20th century have long since piously removed all these treasures to
the museum of  geometry where  the  dust  of  history quickly dimmed their  luster.”   Coxeter’s
geometry was in decline. Geometry was being recast, like a disappointing remake of a cinematic
classic,  in an abstract  format.   The “modern” discipline of geometry was being subsumed by
algebra and analysis. It was all equations, no shapes. 

Coxeter,  meanwhile,  must  have been wearing blinders.  He persevered  with  the shapes  he
loved. He had a particular passion for polytopes, so much so that during his stint at Princeton in
the early 1930s he became known as Mr. Polytope. Polytopes are a family of shapes extended
into the multiple dimensions of hyperspace. They include the sub-species polygons, figures on
the two-dimensional plane having three or more straight sides and angles. Coxeter pointed out in
one of his books that, “Everyone is acquainted with some of the regular polygons: the equilateral
triangle which Euclid constructs in his first proposition, the square which confronts us all over
the civilized world, the pentagon which can be obtained by making a simple knot in a strip of
paper  and  pressing  it  carefully  flat  …and  used  as  the  base  for  the  Pentagon  Building  near
Washington… the hexagon of the snowflake, and so on.” The family of polytopes also includes
the sub-species of polyhedrons, solid figures of the three-dimensional plane. The most famous
polyhedra,  perhaps,  are  the  five  Platonic  Solids  —  the  tetrahedron,  cube,  octahedron,
icosahedron,  and dodecahedron.  A polytope is an extension of either a 2D polygon or a 3D
polyhedron into any, or “n”-dimensions. 

The creatures that result  are psychedelic renderings of a Rubik’s Cube on acid. And these
shapes really can be called creatures. Coxeter’s house was a veritable zoo of them, the entire
place overtaken by a gaggle of muliticoloured spiky models. He had polyhedron art on his wall,
he  had  polyhedron  lamps  and  polyhedron  bookends,  polyhedrons  were  behind  glass,  filling
proper display cases, and they encroached on bookshelves, the fireplace mantel, side tables, and
sometimes  the  dining  room  table.  His  books  Regular  Polytopes [4]  and  Regular  Complex
Polytopes [5], to name only two, were mathematical classics, bestsellers that seem to be forever
in print. Coxeter and his books could be called the geometrical analog of Darwin and his Origin
of  Species.  Because  Coxeter  did  for  polytopes  what  Darwin  did  for  organic  beings  —  he
classified  and enumerated  all  the  symmetries  of  polytopes  that  could  be  found to  exist.  His
findings are invaluable mathematical tools, known as Coxeter numbers and Coxeter groups, tools
that are considered by some mathematicians to be as essential as numbers themselves. Indeed,
Coxeter  groups  provided  an  invaluable  bridge  linking geometry  to  algebra,  and  in  doing so
broadened the scope of each. In particular, however, this served to make geometry relevant once
again.

Working away, traveling and publishing, Coxeter slowly but surely developed a hearty band
of followers.  On a snowy January evening in 1959,  he took the night train  from Toronto to
Philadelphia to give a talk, refining his paper as he travelled. The following day, he noted in his
diary: “About 40 broke into spontaneous applause after my 10 minute lecture on ‘Close Packing
and Froth.’”  The next month Coxeter gave a version of the same lecture to 70 schoolteachers.
Two months later  again he spoke to a group of gifted school  children on “Close Packing of
Spheres.” This time he drew upon a seventeenth-century paper with a title he figured his young
pupils would find amusing. It was called, “Vegetable Statics.” It pondered how many peas, if you
squished a lot of peas into a large cubic pod, would abut against a central pea. 

In that same year — the year that Donald Coxeter propagated to all who would listen on the
subjects  of  optimal  packing  spheres,  as  well  as  the  beauteous  properties  of  triangles  and
polyhedrons and Fibonacci numbers (this time using a pineapple as a prop) — something quite to
the contrary was taking place across the Atlantic. 

A conference convened in Royaumont, France, on the urgent need for reform in the nation’s



mathematics  education.  An  infamous  French  mathematician  rose  from  his  seat  during  one
session, pounded his fist on the table, and screamed:

“A bas Euclide! Mort aux triangles!”  
Translation: “Down with Euclid! Death to Triangles!” 

According to mathematical legend — as I learned it — this war cry came from the heart of
Nicolas Bourbaki. It was representative of Bourbaki’s brawn, if not so much his brain. Bourbaki
was an enfant terrible of a modern mathematician who thought mathematical education in France
was falling behind the international standard. He wanted to revolutionize how mathematics was
taught. In so doing he sought to flatten shapes,  to stamp out the use of triangles and circles.
Bourbaki  set  out  to  write  an  algebraic  encyclopedia  of  mathematics  without  diagrams.  The
Bourbaki aversion to shapes and diagrams was defended as serving the interest  of purity. All
mathematical results had to be reached by intellectual reason alone — by rationality — rather
than by the senses. Our visual perception of the world is unreliable, he argued, our eye leaves us
victim to subjectivity and error. 

A  Scientific American [6] article not two years before the Royaumont conference reported
that Nicolas Bourbaki and his revolutionary approach, despite its supposed parochial agenda, had
taken not only France but also the international mathematical community by storm. “The legends
about him are many, and they are growing every day,” it observed. “Almost every mathematician
knows a few stories about him and is likely to have made up a couple more. His works are read
and extensively quoted all over the world. There are young men in Rio de Janeiro almost all of
whose  mathematical  education  was  obtained  from  his  works,  and  there  are  famous
mathematicians in Berkeley and in Göttingen who think that his influence is pernicious. He has
emotional partisans and vociferous detractors wherever groups of mathematicians congregate.” 

“Ah,  yes,”  recalled  Coxeter  when  I  mentioned  Bourbaki  and  the  “Death  to  Triangles!”
incident. He was cool and calm, with the retrospection of old age. “Everyone is entitled to their
opinion,” he said. “But Bourbaki was terribly mistaken.”

As the Scientific American article concluded in a climatic final sentence to the introduction:
“The strangest thing about [Bourbaki], however, is that he does not exist.” In reality, Nicolas
Bourbaki, the mathematical  international  community learned,  years  after  his first  appeared in
print, was a pseudonym for a secret society of mathematics, the crème de la crème of French
mathematicians.   The  society  was founded  in  1935 and continued  through to  the  late  1970s
before the movement lost steam.  In its heyday, the Bourbaki approach was very popular. Benoit
Mandelbrot,  the  inventor  of  fractals,  experienced  the  Bourbaki  method  first-hand.  Now  a
professor  emeritus  of  mathematical  sciences  at  Yale  and  a  fellow  emeritus  at  International
Business Machines Corporation, Mandelbrot embarked on his university education in France just
as Bourbaki imposed his influence. And Mandelbrot’s uncle, Szolem Mandelbrojt,  was at  the
time a devoted Bourbaki follower. He encouraged his nephew to follow this new and austere
mathematical method. But also thanks to his uncle, Mandelbrot knew that Bourbaki had a strong
bias  against  geometry.  The  young  Mandelbrot  was  disheartened.  The  visual  component  of
geometry  was  his  inspiration.  “I  called  my self  a  geometer,”  he  recalled.  “For  [my  uncle],
geometry was essentially dead except in mathematics for children, and one had to outgrow it to
make a genuine scholarly contribution.”  So Mandelbrot drifted out of mathematics. He dabbled
in  economics,  engineering,  physics,  and  physiology,  intermittently  being  lured  back  into
geometry. In the late 1940s Mandelbrot was at Caltech on a two-year scholarship, when who
turned  up  to  give  a  lecture?  Dr.  Coxeter.  “He  had  a  very  strong  style,  such  a  love  for  the
complexity of geometric shapes,” recalled Mandelbrot of Coxeter’s talk. “I found Coxeter a great
reassurance.”

Marjorie Senechal, a professor in mathematics and the history of science and technology at
Smith  College  in  Northampton,  Massachusetts,  puts  Coxeter’s  role  countering  Bourbaki  in
blunter  terms:  “Coxeter  saved me from Bourbaki,”  Senechal  says.  “For  me, Coxeter  was the
antithesis of Bourbaki. He kept at geometry when it was unfashionable. During the long, lean



years — the dark ages — Donald kept the flame alive and encouraged us, kept us going.” She
even goes so far as to hypothesize that Coxeter was isolated because he engaged in a field that
was scorned, denigrated as “playing with toys,” and considered second-rate math. Certainly, no
one in their right-angled mind would ever stake a career on it. 

Yet  Coxeter  did,  and  now  the  pendulum  of  his  classical  geometry  is  swinging  back.
Geometry’s visual tradition is proving relevant in almost every niche of science. Says Walter
Whiteley, “If you do a search on the Internet with ‘symmetry and viruses,’ the images of viruses
that come up look exactly like something of Coxeter’s or Escher’s. You look at it and say, ‘Gee,
that’s just a beautiful piece of geometry.’  But they are colour-coded proteins of a virus. There’s
a very common one in the shape of the icosahedra which you often see in Donald’s books — it’s
the common cold.” 

Another example provides evidence of Whiteley’s “geometry gap.” Sir Harry Kroto, who,
together  with  Robert  Curl  and Richard  Smalley,  won the  Nobel  Prize  for  their  discovery of
Carbon 60, confirms that had they been familiar with Coxeter’s work, his team’s long hunt for
the shape of Carbon 60 would have been much shorter. Previously, there were only six forms of
extant crystalline carbon, including graphite, as used in pencil lead, and diamond, but scientists
had long speculated there was another.  The structure finally discovered by Kroto et  al  looks
roughly like a soccer ball, or one of Buckminster Fuller’s geodesic domes, with 20 hexagonal
surfaces  and  12  pentagonal  surfaces,  each  a  carbon  atom.  C60,  nicknamed  the
Buckminsterfullerene,  is  currently  being researched as  the  superconductor  of  the  future  with
potential applications as a delivery mechanism curing cancer and AIDS. It is one of the regular
complex polyhedra that Coxeter was so fond of working with, the truncated icosahedron. Since
the discovery of C60, a bit of research on Kroto’s part into extant knowledge quickly brought
Coxeter’s  work to light  as  the  definitive reference.  As a  result,  Kroto  says the  footprints  of
Coxeter’s work are all over his subsequent C60 research on giant Fullerene molecules. He set to
work trying to construct C240, C540, and C6000, with a copy of Coxeter’s Regular Polytopes as
their manual. 

Coxeter’s  work  also  played  a  role  in  the  invention  of  the  modem  that  allows  us  to
communicate  so effectively.  And László Lovász, a  Hungarian  who is  now mathematician-in-
residence at One Microsoft Way in Redmond, Washington, points out that Coxeter’s interest in
mutually tangent circles (on which Coxeter delivered his last paper, at the Budapest conference)
is part of a hot topic, related to the kind of data-mining technology that runs e-commerce engines
such as Amazon.com, and the American government’s surveillance software such as MATRIX,
or Multistate Anti-TeRrorism Information eXchange. These applications of Coxeter’s work are,
albeit,  indirect  and inadvertent.  Coxeter  played a grandfathering role.  Working away through
those dark ages of geometry, he created a repository of invaluable insights about shapes and how
they behave in higher dimensions that serve as a point of reference, a database of sorts, for future
scientists to consult. 

Over  the  course  of  his  career,  Coxeter  ran  hot  and cold when it  came to  applications  of
geometry.  He  expressed  an  interest  in  geometry’s  unexpected  appearances  in  nature,  and
conversed with chemists or biologists. But beyond natural applications, he was nonplussed. Later
in life, certainly, he was blissfully oblivious to these broader reaches of his work. As far as the
modem was concerned, he deplored computers, never touched one and had his son-in-law send
his emails. When he found out about modern applications he seemed to regard them with apathy
or disdain, like a letter from a long-lost relative with whom he had little interest in getting in
touch.

In coming to grips with the omnipotence of geometry, Coxeter’s in particular, I seized upon a
statement made by Brian Greene, a superstring physicist at Columbia University in New York,
and author of the Pulitzer-nominated book, The Elegant Universe [7]. “There is perhaps no better
way to prepare for the scientific breakthroughs of tomorrow,” said Greene, “than to learn the
language of geometry.”  He was referring to the conundrum of modern physics: physicists’ today



have picked up where Einstein left off in the search for a Grand Unified Theory, a single theory
that explains everything. They want a theory that covers everything from the shape of our galaxy
and all the alien galaxies (surely, they have to be out there) to the shape of the smallest nano-
sized  spec  of  nothing.  This  theory  seeks  to  unite  Einstein’s  general  theory  of  relativity,
explaining the large-scale properties of the universe, with quantum theory, explaining the matter
and energy on an atomic and subatomic level.  The trouble with these two laws of existence that
we currently hold true is that they are mutually exclusive. They cannot both be correct. But we
may yet escape the destiny of being reduced to, as Einstein put it, a cosmological crapshoot. 

The latest epiphany, over the last quarter century, is superstring theory. And just to make the
unfathomable string theory more complicated, it turns out there are actually five variations on
string theory— each  supposing in  its  own nuanced  way that  tiny strings  comprise  new,  and
smaller than miniscule dimensions of space. These five versions, however, have been brought
together to form an even grander synthesis plot, known as M-theory. Edward Witten, the big-wig
mathematical physicist behind M-theory, based at Princeton’s Institute for Advanced Study, has
his own ditty of a definition for his field of study — the “M” stands for matrix, magic, mystery,
and another m-word he recently added to the list: murky. That is to say that superstrings and M-
theory hold promise,  but  they are  still  just  theoretical  children.  They are  still  a  puzzle.  It  is
interesting  to  note,  though,  that  Witten  expects  that  the  physics  of  string  theory  and  all  its
infinitesimally small dimensions will ultimately evolve into new branch of geometry. 

String theory came up once when I was interviewing Coxeter. We were talking about  The
Adventures of Alice in Wonderland [8], one of his favourite pieces of literature. He especially
liked the “Jabberwocky” passage.  The way he said that word— “Jabberr-wOckAy!”— was with
such relish, and he could recite entire stanzas with the same dramatic intonation, cranking the
volume on his otherwise sedate self. Coxeter often dipped into his ratty copy of  Alice.  And as
much he liked reading it aloud himself, he also recruited others as the readers because sometimes
he preferred to sit  back in his suitably majestic wing-backed chair and simply listen. I asked
Coxeter, one day after I read him some Jabberwocky, how hadn’t tired of it by now, why he
reveled in it so.

“It’s like reading about a part of mathematics that you know is beautiful,” he explained, “but
that  you don’t quite  understand.  Like string theory. That’s  as much a mystery to me as it  is
anyone else who can’t make head nor tails of the eleventh dimension.”  

Therein, unwittingly, I think Coxeter was onto something.  The enduring problem with string
theory is that string theorists themselves can’t even explain it. They shrug their shoulders and
say, ‘It might be right, or it might be wrong.’ The trouble is the dearth of hard evidence since it
occupies, as Coxeter alluded, a mere eleven dimensions, which are too microscopic to see. But
the  hypothesis  is  that  within  these  microscopic  eleven  dimensions  resides  a  new species  of
subatomic particles, known as supersymmetric particles, or “sparticles.” Physicists are trying to
detect  traces of these sparticles  at  places like Fermilab in Batavia,  Illinois (45 miles  west  of
Chicago),  and the  CERN in  Geneva — home of  the  world’s  largest  particle  accelerator  and
essentially the centre of the universe for determining the content of the universe when it was a
trillionth of a second old (despite this status, they are building a new particle accelerator, the
Large Hadron Collider, which, when it is switched on in 2007, will probe even deeper into matter
and smash nuclei together with even more collision energy). The long hunt for supersymmetry,
like the hunt for Carbon 60, is on. 

This made me wonder: it sounds far-fetched, but could Coxeter’s templates of the symmetries
of  shapes  in  multiple  dimensions  possibly  unlock  part  of  puzzle  of  the  unified  theory  of
everything? I entered “Coxeter and M-theory” into Google. The first thing that popped up was an
academic paper by Marc Henneaux, a specialist in black holes at the Free University, Brussels,
and director of the Service de Physique Théorique et Mathématique. His paper was titled, in big
bold letters,



“PLATONIC SOLIDS AND EINSTEIN THEORY OF GRAVITY:
 UNEXPECTED CONNECTIONS”

As it turned out, it wasn’t so much an academic paper as it was blurbs from another Power Point
presentation. It read, in part:

GRAVITATION = GEOMETRY
Einstein revolution: gravity is spacetime geometry

General relativity has proved to be remarkably successful …but there are …

PROBLEMS

General relativity + Quantum Mechanics = Inconsistencies
(e.g., infinite probabilities!)

Synthesis of both should shed light on the first moments of universe
(« big bang »), on black holes, and on the problem of why the vacuum energy is

so small.
Towards a solution: string (M-)theory?

SYMMETRIES: THE KEY?

Symmetry = invariance of the laws of physics under certain changes in the point
of view

What are the underlying symmetries of M-theory?

Platonic solids: the golden gate to symmetry

Platonic  solids,  of  course,  are  the  building blocks  of  geometry  and the  toys Coxeter  played
around with so often in his work. And sure enough, a little further into the notes, Coxeter’s work
was cited: 

Coxeter groups may thus signal a much bigger symmetry.
 
“Coxeter’s  work  does  make  an  unexpected  appearance  in  Einstein’s  theory  of  gravity,”
confirmed Henneaux, when I called him up in Brussels to inquire. When I hung up, I thought to
myself, ‘This would seem to answer the question of why the loss of Coxeter’s classical geometry
would be immeasurable, existentially infinite, on a universal scale to the order of a dimension as
yet unknowable.’ Ipso facto, then, this Coxeter story, I figured, was worth looking into. 
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