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Abstract 

In Persian art of the medieval time, the polygonal sub-grid system, which is based on extensive use of geometric 

constructions, is the only method for which there is documented proof.  Artists and craftsmen used this method 

widely— that exhibited their high skill or collaborations with geometers—throughout the Islamic world.  

Nevertheless, it would be a great mistake to assume that one, and only one, method was responsible for all the 

ornamental patterns and tiling designs of Persian art.  The modularity approach based on color contrast of cut-tiles 
may be considered as another possible method used by artisans based on techniques of trial and error.  

 

1. Introduction 

 

In Mathematics and Arts: Connections between Theory and Practice in the Medieval Islamic World [1], 

we read: “Intriguing patterns ornamenting architectural monuments and other objects of art bear witness 

to the predominance of geometry in Islamic art.  Traditionally, the artisans who produced them were 

believed to be experts in geometry.  Recent studies, however, have shown that mathematicians who taught 

practical geometry to artisans played a decisive role in the creation of those patterns and perhaps in 

designing the buildings themselves.”   The purpose of this article is to not only emphasize the expertise of 

artisans as well as the direct involvement of mathematicians in Persian art of the medieval time, but also 

to suggest the use of modularity in creations of some classes of patterns.  Through comparison of extant 

designs and models we present the possibility of techniques of trial and error used by artisans to create 

fascinating designs based on sets of tiles we called “Kufi modules.”   

In the present article, for our discussions, we mainly rely on two resources: a treatise written by Buzjani 

in the 10
th
 century, On Those Parts of Geometry Needed by Craftsmen [2], and a modern five volume 

book of design construction illustrations and related images entitled Construction and Execution of 

Design in Persian Mosaics [3].  

The treatise by Buzjani was originally written in Arabic, the academic language of the Islamic world of 

the time, and was translated to the Persian language of its time in two different periods: 10
th
 and 15

th
 

centuries.  There are only a few known original translations of this book in the world; two of them are 

kept in two libraries in Iran, Tehran University Library and Astan Ghods Razavi Library, and another in 



the National library in Paris. The book Applied Geometry, which includes a contemporary Persian 

language translation of Buzjani’s treatise appeared first in 1990 and then was republished with some 

corrections in 1997 [2].  The book also includes another treatise of later centuries: Interlocks of Similar or 

Corresponding Figures. Even though the book introduces a 15
th
 century Persian mathematician as the 

author of this treatise, there are documents that suggest the possibility of a much earlier time writer, 

around the 13
th
 century, for this work [1]. 

Perhaps the most comprehensive and elegant recent book about Persian mosaics that includes geometric 

constructions of designs presented along with colorful images of their executions performed on different 

mediums on the wall, floor, interior and exterior of domes, doors and windows, and many more, is 

Construction and Execution of Design in Persian Mosaics written by Maher AnNaghsh [3].  The author, 

who is a professional artisan, inherited his profession from his ancestors of several centuries, has the most 

access to original artisans’ repertories of the past.  The ornamental qualities of these geometric 

constructions and their executions provide a joyful journey to the past for readers.  

 

In the next section we introduce Buzjani by illustrating his “cut and assemble” method of squares.  In 

section 3 we present what we propose as a modular art, based on the color contrast of sets of cut-tiles.  

Section 4 proposes the possibility of “gaps” and “overlaps” as two ideas for creating other ornamental 

designs based on modularity.  In section 5 we introduce Kufi modules and show how this set has the 

capacity of generating a large number of traditional ornamental and calligraphic designs. 

 

 

2. Abul Wafa, Mohandes 

 

Abul Wafa al-Buzjani was born in Buzjan, near Nishabur, a city in Khorasan, Iran, in 940 A.D. He 

learned mathematics from his uncles and later on moved to Baghdad when he was in his twenties.  He 

flourished there as a great mathematician and astronomer.  He was given the title Mohandes by the 

mathematicians, scientists, and artisans of his time, which meant “the most skillful and knowledgeable 

professional geometer.”  He died in 997/998 A.D.   

 

Buzjani’s important contributions include geometry and trigonometry. He was the first to show the 

generality of the sine theorem relative to spherical triangles and developed a new method of constructing 

sine tables. He introduced the secant and cosecant for the first time, knew the relations between the 

trigonometric lines, which are now used to define them, and undertook extensive studies on conics. In 

geometry he solved problems about compass and straightedge constructions in plane and in sphere.   

Buzjani wrote in On Those Parts of Geometry Needed by Craftsmen that he participated in meetings 

between artisans and mathematicians.  “At some sessions, mathematicians gave instructions on certain 

principles and practices of geometry.  At others, they worked on geometric constructions of two- or three- 

dimensional ornamental patterns or gave advice on the application of geometry to architectural 

construction [1].”  Such gatherings were usual practice in the Islamic world in medieval times. “Ghiyath 

al-Din Jamshid al-Kashi solved a problem about a triangular leveling instrument at the construction site of 

the astronomical observatory in Samarkand during a meeting of artisans, mathematicians, and other 

dignitaries [1].”  Therefore, it will not be far from the truth if we claim that some of the spatial properties 

and aesthetic elements in the structures of the Islamic art and architecture come from the direct 

involvements of mathematicians.       

In his treatise, in a chapter titled “On Dividing and Assembling Squares,” Buzjani presents the two 

different attitudes of mathematicians and artisans toward geometry:  



A number of geometers and artisans have made error in the matter of these squares and 

their assembling. The geometers made error because they don’t have practice in applied 

constructing, and the artisans because they lack knowledge of reasoning and proof. 

He continues:  

I was present at a meeting in which a number of geometers and artisans participated.  

They were asked about the construction of a square from three squares.  Geometers easily 

constructed a line such that the square of it is equal to the three squares but none of the 

artisans was satisfied. They wanted to divide those squares into pieces from which one 

square can be assembled.    

Buzjani describes what he means by the 

mathematicians’ approach for solving this 

problem.  In the following figure AB presents 

one side of a square unit. Then AC = 2 , 

AD = 3 , AE = 4 , AF = 5 , and so on.  

Therefore, in each step we are able to find the 

side of a square with its area equal to 2, 3, 4, 

5, and so on.  A square with side congruent to 

AD has the same area as 3 square units. 

F

E

D
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Figure 1: Consecutive constructions of n units line 

segments. 
 

Then artisans presented several methods of cutting and assembling of these three squares.  Some of these 

methods based on mathematical proofs turned out to be correct.  Others were incorrect, even though they 

seemed correct at first glance.    

Buzjani illustrates two of these incorrect cutting-and-pasting constructions.  We show one of them here:  

Some of the artisans locate one of these squares in the middle and divide the next one on 

its diagonal and divide the third square into one isosceles right triangle and two congruent 

trapezoids and assemble together as it seen in the figure.   

        

Figure 2: An incorrect construction of a square from three unit squares.  

For a layperson not familiar with the science of geometry, this solution seems correct.  

However, it can be shown that this is not the case. It is true that the resulting shape has 

four right angles.  It is also true that each side of the larger shape seems to be one unit 



plus one half of the diagonal of the unit square.  However, this construction does not 

result in a square because the diagonal of the unit square (which is the hypotenuse of the 

assembled larger triangle) is an irrational number but the measure of the line segment that 

this hypotenuse is located on in the larger shape is one and half a unit, which is a rational 

number.   

Buzjani includes more information and simple approximations to reinforce his point that the construction 

is not correct.  However, his way of using an argument based on the idea of rational and irrational 

numbers is undoubtedly elegant.  He then after presenting another incorrect artisans’ way of cutting and 

pasting gives his solution, which is mathematically correct.  At the practical level it can be performed in 

any medium by artisans.   

But on the division of the squares based on reasoning we divide two squares along their 

diagonals.  We locate each of these four triangles on one side of the third square such a 

way that one vertex of the acute angle of the triangle to be located on a vertex of the 

square.  Then by means of line segments we join the vertices of the right angles of four 

triangles.  From each larger triangle a smaller triangle will be cut using these line 

segments.  We put each of these triangles in the congruent empty space next to it to 

complete the square.  

                                 

    Figure 3: The correct construction of a square from three unit squares.  

Another interesting problem that Buzjani presents 

in his book is the composition of a single square 

from a finite number of different sizes of squares.  

For this, he solves the problem for two squares first 

and then comments that with the same method we 

are able to solve the problem for any number of 

squares.        
 

Figure 4: Generating a square from two different 

sizes squares. 

 

The proposed solution for two squares is again based on cutting and pasting squares and therefore is 

acceptable by artisans.  His solution is elegant:  We first put the small square (a) on the top of the larger 

square (b) and then draw necessary line segments presented in (d) and (e) and finally cut the solid lines 

and paste them to obtain the resulting square.  



                     
(a)                            (b)                             (c )                             (d)                            (e) 

Figure 5: The details of generating a square from two different squares. 

 For a person familiar with elementary mathematics what Buzjani is doing in this problem can be justified 

as follows:  Let a be the size of a side of small square and b the size of a side of the large square. Then the 

sum of the areas of these two squares will be a
2
 + b

2
.  Now the cuts will create four right triangles with 

sides a and b (and hypotenuse  (a
2
 + b

2
)), and a square with side equal to b  a.  The way that we arrange 

these four right triangles and the little square is in fact the visualization of the following equation: 

 

a
2
 + b

2
 = 4 ( 2

1  ab) + (b  a)
2
. 

 

 

3. Modularity Art: Elementary Trial and Error, Sophisticated Symmetry 

 

It may seem that some of the cutting and pasting activities presented in On Those Parts of Geometry 

Needed by Craftsmen by Buzjani such as mentioned above are simply mathematical challenges and lack 

practical value.  However, if we study ornamental designs in Persian arts and architecture closely we 

notice the use of modular designs based on assembled cut-tiles.  “Recently discovered authentic plans of 

buildings and architectural decorations show that their designs were based on square-grid layouts or radial 

organization of squares and rhombi.  The 15
th
-century mathematician Ghiyth al-Din Jamshid al-Kashi 

noted that muqarnas designs were generated from a unit square which he specifically referred to as 

“module” (migyas).”[1] 

 

So far we have seen that by using these modules one can approach ornamental qualities of patterns 

created by ingenious processes executed by either highly skilled artisans or mathematicians.  What we 

wish to propose is controversial:  There is the possibility that not very skilled artisans, who had no access 

to geometers, by the use of elementary cut-and-paste processes, based on trial and error, could create 

complex designs that require sophisticated geometric explanations—processes that remind us of modern 

fractal geometry: simple input with complicated results.  

 

The widespread approach for constructing and arranging pattern designs in ceramic mosaic during the 10
th
 

and 11
th
 centuries was the use of squares.  The economy of energy and space for molding, casting, 

painting, and baking tiles forced artisans to use single-colored square tiles.  The four colors available were 

light blue, navy blue, brown and black. The color scheme improved rapidly by increasing the number of 

colors made through different combinations of metals [4].  It is natural to assume that a practical way of 

achieving new patterns from these squares for some artisans would be to cut them in different formats and 

assemble them such a way that different colors replace one other in new arrangements.  In this way the 

artisans could rely on the color contrast of cut-tiles to emphasize designs, rather than use a compass and 

straightedge.  An elementary example would be to consider congruent squares in two colors of black and 

white.  If we cut an isosceles right triangle with sides equal to one half of the side of these squares in one 

color and exchange it with the other triangle with opposite color, we have two two-color “modules” 



where one is the negative of the other.  Now if we also include the two original single-color square 

designs, then we have four modules to work with to create patterns. 

        

Figure 6: Four modules created based on two different colors of congruent squares.   

One interesting Islamic pattern is the “maple leaf”.  Polya 

illustrated the 17 wallpaper patterns in his article “Über die 

Analogie der Kristallsymmetrie in der Ebene” published in 

Zeitschrift für Kristallographie in 1924.  He illustrated a maple leaf 

pattern and identified it as D
°
4. The basic shape to construct this 

pattern, based on Heech’s classification of the asymmetric tiles [5] 

that can fill the plane in an isohedral manner, is an isosceles right 

triangle. The isometries employed are then a quarter rotation of one 

side to another and then reflection of the shape under the 

hypotenuse.  The mathematical notation for this pattern is P4m. It 

belongs to the square lattice of wallpaper patterns and its highest 

order of rotation is 4.  It can be generated by 1/8 of its square unit. 

If we consider this design as a two-color pattern then its 

crystallographic group classification will be p4’g’m (2-fold 

rotational symmetry, vertical and horizontal reflective symmetries). 

 

 Figure 7: A “maple leaf” motif.

     

                   
 

Figure 8:  Traditional construction of the “maple leaf” pattern. 

Figure 8 presents a traditional means of constructing the maple leaf pattern using compass and 

straightedge.  

In comparison we wish to present the modularity method and introduce the simplest possible set of 

modules using two single-color square tiles cut diagonally to generate the “maple leaf” pattern.  If we cut 

a black and a white tile from their diagonals and exchange one of the generated triangles from each then 

we have a set of three modules of black, white, and half black-half white tile.  In any other case by a 

diagonally shaped cut we create four modules as illustrated in Figure 6.  Truchet’s 1704 paper laid down a 

mathematical framework for studying permutations based on these tiles [6].  Now by using 14 white, 14 



black, and 8 black-white tiles we create a 36-tile grid, which is a base for construction of the maple leaf 

tessellation (Figure 9). 

      

Figure 9:  A set of three modules, the generated base design, and the final result for the “maple leaf” 

tessellation. 

 

Another interesting problem that Buzjani 

solved in assembling of squares is if we 

have (m
2 

+ n
2
) squares, where m, n Z

+
,
 

m  n, (the sum of two perfect square 

numbers) such as 5 (2
2
 + 1

2
) or 13 (3

2
 + 

2
2
), then we can make two congruent 

rectangles, each of whose length is equal 

to m and their width is equal to n.  

Therefore, we use 2mn of our squares in 

this way.  This is possible because of the 

simple fact that m
2 
+ n

2 
 2mn.  But then, 

the unused squares make a perfect 

square: (m  n)
 2

.  Now if we cut these 

two rectangles diagonally and arrange the 

pieces around the square with side m  n 

we find our desired square.  In fact 

Buzjani mentions that the measure of the 

diagonals of the two rectangles is equal 

to the side of desired square ( m
2 

+ n
2
) 

and this is a hint for how to arrange the 

pieces around the square with side m  n.  

Figure 10 presents two examples of 5 and 

13 squares, respectively. 

 
Figure 10:  Cutting and assembling a square from five 

square units; cutting and assembling a square from thirteen 

square units. 

We should note that the “sum of two perfect square” problem, is in fact, a special case for the general case 

of “two different squares” problem, presented in Figure 4.   Nevertheless the cut for the above two 

examples can provide us, or an artisan with a set of modules for exploring new patterns.  The following 



figure presents a pattern, called “hat,” which can be generated by only two opposite modules (without the 

use of original single color tiles) using the cuts from the above “5 squares” problem. 

      

 

Figure 11:  Modules based on the “5 squares” problem, and its generated “hat” tessellation. 

Figure 12 illustrates steps taken by a geometer or a highly skilled artisan to compose the “hat” grid using 

compass and straightedge.  You may find more design constructions in [7]. 

 

       
 

Figure 12: Polygon construction approach for generating the grid for the “hat” tiling. 

The following tiling is 

generated from a set of 

modules that are cons-

tructed from cutting and 

assembling thirteen squares 

as illustrated in Figure 10. 

 

Figure 13:  A tiling created 

by trial and error from a set 

of modules resulting from 

cuts on thirteen squares. 



4. Gaps and Overlaps for Creating Ornamental Modules 

The treatise Interlocks of Similar or Corresponding Figures presents various sub-grids of ornamental 

geometry, which were compiled based on a series of meetings between geometers and artisans.  Figure 

14a shows a square polygonal sub-grid from this treatise. The artisan uses this sub-grid (and its reflection 

on its sides) as a motif to cover a surface.  Figures 14b-c show two different ways that an artisan may use 

copies of this tile for tiling of a wall or a floor.  The first tiling uses the copies of the original tile and its 

mirror image to cover a surface without any gaps (a square tessellation).  However, the second tiling, that 

only uses the original motif, admits square-shape gaps that can be filled out by smaller squares.  An 

immediate and obvious conclusion is that artisans of medieval Persia who had access to actual tiles tried 

all these possibilities for ornamental tilings and applied them in their works.         

                                                      
(a)                                                    (b)                                                  (c)  

Figure 14: (a) Polygonal grid, (b) Tiling without gap, (c) Tiling with gap. 

In fact, tilings of two different size squares are not unusual in Islamic art.  A proof of the Pythagorean 

theorem, attributed to Annairizi of Arabia (circa 900), is based on the tilling of two squares of different 

sizes (Figure 15).  The bold overlay of larger squares presents copies of a square whose area is equal to 

the sum of the areas of the two square bases of the tiling.  This proof is based on the cutting and 

assembling method [8].   

             
    

  Figure 15: Proof of the Pythagorean theorem by Annairizi.  



Unlike “gapping,” when we work with actual tiles, we cannot produce “overlapping” during execution of 

an ornamental design on the wall.  However, one step earlier, before the artisan works with actual tile, he 

needs to transfer the grid from his scrolls to the wall.  In this step he can simply overlay several grids to 

produce a more detailed and attractive tiling—a perfect “overlapping.”  The artisans of medieval Persia 

were fascinated to incorporate multiple-level designs into their ornaments. One to mention among various 

methods was to use a smaller scale of the primary grid as an overlay in a way that vertices of the two 

grids coincide.  “An example of an Islamic self-similar design is probably compiled in the late 15
th
 or 16

th
 

century somewhere in western or central Iran.  Pattern 28 in the Topkapi scroll is a 5-fold self-similar 

design that also depicts the underlying polygonal sub-grid used in the creation of the secondary design.  

The fact that artists and designers limited themselves to only a single iteration of self-similarity is due to 

the constraints of the materials than any lack of creative imagination or geometric ingenuity. [9]”   

The following figure presents the “maple leaf” tiling by 

means of a totally new construction.  Here we have 

employed a different set of modules.  Unlike the previous 

approach (Figure 9), we cannot create the design without 

using gaps and overlaps. It seems that these modules 

provide more capacity for creating new designs if we use 

proper gaps and overlaps. A person may discover this or 

similar tiling motif faster than using, for example, the 

modules that we introduced in Figure 10.  

Figure 16:  A new approach for creating the “maple leaf” 

tiling using a set of Kufi modules. 

 

5. Kufi Modules 

 

The modules that we introduced in Figure 16 are produced from a simple 

procedure of two equal cuts in two opposite color tiles and the exchange 

of opposite color triangles. We will use these modules not only to 

regenerate some original Persian ornamental designs, but also to render 

angular and geometric Kufic calligraphy of this area.  Because of the 

relationship to Kufic calligraphy, we have chosen to call these Kufic 

modules. 

 
Figure 17: Kufi modules

        

Figure 18: A Kufi module and its tiling in Goharshad Mosque, Mashad, Iran. 



 

   

Figure 19: Kufi module structure and a related tiling in Mazar Sharif, Afghanestan. 

     

Figure 20: Calligraphic design using Kufi modules and a related tiling in the mausoleum of Shahzadeh 

Hossein, Ghazvin, Iran. 

              

Figure 21: Design using a combination of overlapping Kufi modules and checkerboard tile, and a similar 

tiling  in the mausoleum of Shahzadeh Ibrahim, Isfahan, Iran. 



           

Figure 22: Design based on Kufi modules and checkerboard tile, and a similar tiling in the Ali Mosque in 

Esfahan, Iran. 

Using Kufi modules, appropriate gaps or overlaps, and appropriate use of other tiles, we are able to 

generate the basic ornamental pattern for a large class of tiling designs as we can observe in Figures 18-

22. All the original patterns in these figures are from [3]. 

6. Conclusion 

The art of Medieval Persian artists and artisans demonstrates the complex overlay of geometric patterns, 

floral designs, and calligraphy.  They achieved this level of sophistication by collaboration with 

mathematicians of their time and by improvement of their skill levels in geometric constructions.  The 

most ubiquitous method in creation of the ornamental patterns for the artisans was by means of polygonal 

constructions.  Some cut-tile patterns suggest a modular approach, which is based on color contrast and 

repetition by trial and error methods.   
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