
BRIDGES 
Mathematical Connections 
in Art, Music, and Science 

Exploring Hyperobjects: A Metaphor of Higher Dimensions 

Michael Mahan, MFA 
Michael Mahan Design 

Post Office Box 913 
Valley Center, CA 92082 

www.mmahan.us 
E-mail: mike@mmahan.us 

Abstract 

The idea that 3-D projections of 4-D objects are analogous to 2-D projections of 3-D objects is an old one, 
but the ability to represent and explore these 3-D images in detail was impossible before the advent of 
computers and 3-D modeling programs. This paper will defme "hyperobjects" as a loose 3-D analogy of the 
2-D images. It will explain how these hyperobjects must be viewed from the inside and how reflective 
materials provide a simulation of fourth dimensionality. It will describe how images produced by various 
classes ofhyperobjects differ and how they can generate some very sophisticated images that can certainly be 
taken as representing recursive mathematical concepts as well as higher spatial dimensions. 

1. Introduction 

1.1 The Analogy. "The concept of the fourth (spatial) dimension is usually surrounded by mystery and 
suspicion. How dare we, creatures of length, height, and width, speak of four-dimensional space? Is it 
possible by using all our three-dimensional intelligence to imagine a super-space of four 
dimensions? .. We do, in a certain sense, squeeze three-dimensional bodies into a plane by drawing a 
picture of them." [1] A two-dimensional drawing of a cube is a square within a square (Figure 1). By 
analogy a three-dimensional "drawing" of a fourth-dimensional cube would be a cube within a cube. The 
fact that I can illustrate this in two dimensions shows the power of human imagination (Figure 2). These 
fourth-dimensional objects represented in three dimensions can be called hyperobjects. {Although in 
physics and cosmology time is considered a fourth dimension, this analogy is intended to represent only 
static i.e. spatial dimensions.) 

Figure 1: A Cube in 2-D Figure 2: A (2-D representation of) a Super-cube in 3-D 

1.2 Stretching the Analogy. Does the same analogy work for other geometric objects? Consider a sphere. 
At first glance it would seem that a sphere within a sphere would constitute a hypersphere. But on 
returning to the original 2-D view, we find that a sphere is not represented as a circle within a circle. A 
circle within a circle is the representation of a cylinder. But only as seen by looking at it from the end. If it 
is viewed from the side the circles become ellipses connected by lines. Depending on the height of the 
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cylinder and the angle of view they mayor may not be intersecting. The 2-D representation presents both 
sides of a sphere asa single circle, but the perspective distortion would be different for each side. In the 
case of a sphere the angle of view does not change the representation. Viewed from other that straight on 
the representation of a cube can take many other forms. A single three dimensional object must be 
represented by a whole class of 2-D drawings. This is further complicated when we look at objects that 
are not regular. Non-cubic rectangular solids can vary in length, width, and height, which in tum affect 
the shape. A cylinders and cones change as their diameters and heights change. Therefore, it must be true 
that a single fourth dimensional object must be represented by a whole class of3-D objects. 

For this reason it is expedient to name hyperobjects after the objects in the representation rather 
than the higher dimensional object being represented. By this convention a sphere within a sphere would 
be a hypersphere rather than a hypercylinder; a cylinder within a cylinder would be a hypercylinder, etc. 

1.3 Stretching the Analogy Further. If an analogy is to be made between 2-D and 3-D representations, 
then viewer perception must be analyzed. How does a Flatlander perceive the 2-D cube? Presuming that 
the resident of Flatland has depth perception and mobility, but not X-ray vision, upon examining the cube 
he will find it no different than a square {Figure 3).That is of course ifhis point of view is outside the box. 

D 
Figure 3: A Flatlander's point of view. 

In order for him to see the difference his point of view must be inside the box. (Thinking outside the box 
is not necessarily more creative.) Notice that the lines connecting the corners of the squares are gone. 
These lines are significant in that they represent edges of the cube. But, what can the Flatlander see. If we 
examine our perception of lower dimensions we realize that we cannot perceive two dimensional objects; 
A square must have some thickness to exist in a 3-D world. By extension neither we nor the Flatlander 
can see a line with only one dimension. In this stretched analogy I have eliminated the surfaces that 
connect the 3-D shapes that make up the hyperobjects. (In reality these are not simply surfaces, but sides 
of additional 3-D projections of parts of the 4-D object, just as the lines removed in the Flatland version 
of the cube are not simply lines but sides of trapezoidal projections of additional sides of the cube. In 
order for these to be included there have to be two or more objects in the same space. Since this is clearly 
impossible, it is more convenient to eliminate them.) 

2. Representing Higher Dimensions 

2.1 Virtual Hyperobjects. Until recently representing hyperobjects in 3-D has been problematic. 
In the case of the cube, for example, It could only be drawn in 2-D as in Figure 2, or "drawn" in 
3-D as (literally) a wire-frame model. With the advent of computers and powerful 3-D modeling 
and rendering tools it has become possible to create virtual hyperobjects. Although practically 
these can only be presented on a 2-D screen, walk-through and examine tools allow them to 
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behave very much as true 3-D objects. Furthermore, view points can be created without the 
intrusion of a viewer, and these can easily be made to be inside the object itself. (Figure 4) 

Figure 4: A 3-D hypercube Figure 5: A mirror hypercube 

2.2 The Ontology of Virtual Objects. The simple representation of a cube within a cube is a useful 
metaphor for a hyperobject, but it isn't yet very ontologically satisfying. How can it be made so? Two 
cubes could be Boolean added together to make a single object. This works if the cubes are surfaces or 
shells, if, however, they are solids it simply gives a cube identical to the larger cube. Upon looking at the 
nature of 3-D computer modeling some very interesting things become clear. Objects using an ACIS 
modeling engine behave as if they were solid objects; sliced in two they yield solid objects not surfaces or 
shells. In every way that is, but one. They can be viewed from the inside. If we put one ACIS solid inside 
another, the smaller can be subtracted from the larger to give a single object with a void in it. This object 
can be viewed from inside the resulting solid part. This, I would suggest, is an onto logically satisfying 
hyperobject. (And it can lead to the metaphysical question of whether all matter is simply holes in the 
ether.) 

2.3 Adding Another Dimension. I've made an analogy, stretched it, stretched it further, and insisted on 
ontological purity. The reSUlting virtual hyperobject may be pure, but how can it be made interesting and 
how can it represent a fourth dimension? The element of time is already necessary for the examination of 
the hyperobject, it has to turn or be seen from a changing point of view to express its true 3-D nature on a 
2-D surface. So, using artistic license, I'll try representing its fourth dimensionality in the metaphor of a 
mirror. This can be done in a 3-D computer model simply by assigning a mirror material. An additional 
virtue of the computer model is that there is no intrusion of the viewer's reflection. As Figure 5 shows 
this introduces a whole new dimension. (Although. in the figurative and metaphorical sense this is 
certainly true, I won't try to defend it in the logic of the 2-3-4-D analogy. In the artistic sense it doesn't 
violate the ontological purity of the virtual hyperobject.) I didn't create this concept of the virtual 
hyperobject and then make the objects. Rather, I created the objects, found them extremely interesting, 
and then refined the concept as post factum justification. 

3. Modeling Hyperobjects 

3.1 Simple Hyperobjects. I started with what I call "simple hyperobjects." These are objects in 
which the subtracted interior is simply a scaled version of the outer object. The cube above is a 
simple hyperobject. Initially I tried to keep everything as simple as possible. One of the first 
things I discovered was that purely ambient light does not produce reflections in a pure mirror 
material. I deliberately kept the material simple: plain mirror, black mirror or gold mirror. I tried 
to use minimum lighting: one or two point lights, or a single headlight. I could introduce 
surprising colors simply with a colored light. The hypercube produced a myriad of cube images 
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in its reflections, but lighting it without extreme glare proved very difficuh. This seems to be 
because of the right angles of the faces. The hypersphere was relatively uninteresting; I think this 
is due to a combination of its lack of distinct facets and its total symmetry The hypersphere is 
always rotated the same in relation to the viewer. Only the orientation of the light source affects 
the rendering. (Figures 6 and 7) 

Figure 6: Hypersphere with a headlight Figure 7: Hypersphere with a point light 

3.2 Faceted Hyperobjects. All hyperpolyhedra render as crystallographic images. What begins to 
become clear in these renderings is the recursive structure of the reflections. The renderings reveal self:. 
similarity at different degrees of magnification. More complicated hyperpolyhedra tend to produce more 
complicated images, not necessarily more interesting ones, although they definitely tend to complicate the 
rendering process itself. (Figures 8 and 9) 

Figure 8: Hypertetrahedron Figure 9: Hyperoctahedreon 

Figure 10: Hyper-stellated-tetraheclron. View 1. FigUre 11: Hyper-stellated-tetrahedron. View 2. 

As the shapes become more faceted and less symmetrical, point of view begins to make more of a 
difference in the renderings. A single model can produce a multitude of remarkable Images. Because of 
this, animating rotations of the model or camera and saving the indiVidual images is a good way to 
explore them. (Figures 10 and 11) Since the facets of a regular polyhedron are all identical regular 
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polygons, self similarity tends to be constant across reflective levels. Zooming in or out doesn't change 
the appearance much. Neither do the positions of the lights. Colored lights produce quite beautiful 
renderings. The resemblance of some of these images to the analytical cubism of Picasso and Braque is 
noteworthy. 

3.3 Curved Surfaces. Because of their total symmetry, spheres are not particular interesting 
hyperobjects. But other solids with curved surfaces do produce some very interesting reflections. These 
change greatly according to point of view. In rendering faceted hyperobjects, the recursive images reflect 
the shape of the object itself. Introducing curved surfaces changes this. There is self-similarity but the 
shapes seem to be products of rendering the reflections. The 3-D modeling process uses approximations 
of curves to some degree and these show up to some extent in the renderings. Although pseudo facets tend 
to distort the images somewhat, they are not the primary cause of the recursiveness, which is, of course, 
the result of reflections of reflections ad infinitum. (Figures 13, 14, 15, and 16) 

Figure 12: Hypercone. View 1. Figure 13: Hypercone. View2. 

Figure 14: Hypercylinder. View 1. Figure 15: Hypercylinder. View2 

3.4 Hyperellipsoids. The cone and the cylinder have flat facets, but these are not the only source of 
interest in the hyper reflections. Although the hypersphere proved relatively uninteresting, some of the 
most interesting images of simple hyperobjects come from hyperellipsoids. Borrowing from UFOlogy, 
I'll call the two basic shapes a cigar ellipsoid (Figures 16 and 17.) and a saucer ellipsoid (Figures 18 and 
19.) They were created by revolving an ellipse around its large and small diameters respectively. Because 
of non-uniform distortions the reflected shapes become very strange as the depths increase. Because the 
images change almost violently depending on point of view, using animations to produce multiple 
images, then extracting the most interesting is a practical way to proceed. As art these images are, 
therefore, almost found objects. They are to be discovered within the hyperobjt<ct rather than being 
created from it. 
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Figure 16: Hyperellipsoid Cigar. View 1. Figure 17: Hyperellipsoid Cigar. View 2. 

Figure 18: Hyperellipsoid. Saucer. View r 
'.-

Figure 19: Hyperellipsoid Saucer. View 2. 

4. Hybrid Hyperobjects 

4:1 Rationalization. Stretching an analogy created justification for simple hyperobjects. But if 
we consider hybrid hyperobjects, a cube within a sphere for example, how can it be justified? 
Consider the prism created by joining a circle to a square. (Figure 20.) Viewed in perspective 
from one end it is a square within a circle. (Figure 21.) Viewed from the other end it would be a 
circle within a square. Viewed from slightly different angle it would give intersecting shapes. 
This is ample rationalization for hybrid hyperobjects, of the object within-an-object type and the 
intersecting objects type (Figure 23.) I will call hyperobjects of both these types, hyperprisims. 

Figure 20: A circle-square prism. Figure 21: This prism in. 
one point perspective 

~ 

Figure 22: Prism from a 
slightly differ.ent angle 
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4.2 Byperprisims. It is not my intention here to develop a descriptive taxonomy of hyperobjects. Simple 
hyperobjects can be named for their 3-D objects. Even so, this ignores the relative sizes of the inner and 
outer objects and the proportions of irregular objects. Expanding on the above definition of a hyperprism, 
I will say that it is a class of hyperobjects created from two different intersecting 3-D objects. This is a 
very broad class, but since the 3-D drawings of the hyperobjects are saved and can be measured, they will 
serve as their own descriptions, although they still lack any logical filing system. Within a rigorously 
systematic approach points of view and light positions must also be saved and documented. The sphere
cube hyperprism of Figure 23 is analogous to the projection in Figure 22. 

Figure 23: A sphere-cube hyper prism Figure 24: View from within the cube 

Rendered from within the sphere, this hyperprism is of little interest; viewed from inside the 
intersection of the sphere and cube, this it is somewhat more interesting. However, when the view point is 
placed inside the cube a very complex recursive structure becomes apparent. Worlds recede ad infinitum 
and upon close examination each of these worlds reveals another set of similar receding worlds. That 
could be a description of the Mandelbrot Set! 

4.3 Complex Byperobjects. After modeling a simple hyperellipsoid I modeled an ellipsoid containing 
two smaller ellipsoids. This seemed logical in that an ellipse has two focal points, but other than that I did 
not try to justifY it through analogy. I dubbed it a complex hyperellipsoid. This object proved to be so 
interesting that I developed a complicated camera path to explore it through animation, saving all the 
individual frames. I placed the entire object in a spherical environment in order to illustrate the camera 
entering the ellipsoid, and because the camera passes through the smaller ellipsoids I put a sphere in one 
and a torus in the other. I did this without feeling any further need for justification other than visual 
interest. I call this project, Upon Shooting the Moon, I Discovered a Strange Dimension. In the exterior 
viewing environment the ellipsoid looks like a moon. The images rendered by viewing from within were 
so entirely unpredictable that I feel like they were there to be discovered. Figures 25, 26, 27 and 28 are 
four frames picked more or less at random from the video. None of them is a view from the interior of the 
small ellipsoids. 

Figure 25: Complex Hyperellipsoid Figure 26: Complex Hyperellipsoid 
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Figure 27: Complex Hyperellipsoid Figure 28: Complex Hyperellipsoid 

In this remarkable set of images, generated only from an ellipsoid, a strange world becomes 
visible. Here again, there are similarities to the Mandlebrot Set, in the self-similarity over a range of 
scales and in some of the shapes themselves. 

5. Conclusions 

5.1 Metaphysical Speculations. The similarities of some of the images of these virtual hyperobjects to 
the Mandelbrot Set and other recursive self-similar structures is remarkable. Is it possible that these are 
images of hyperobjects? Suppose for a moment that there is some view of some 3-D hyperobject that 
yields a particular 2-D set. Can that object be determined from that set? What is the nature of the 4-D 
object represented by this hyperobject? Are these sets windows into higher dimensions? These questions 
may be unanswerable; they certainly are unanswerable by me. 

5.2 Further Explorations. I have only just begun exploring hyperobjects. What began on a whim has 
become a major project. Since I have a virtually unlimited source of images, I think it is conceptually 
important to document the objects themselves and preserve that documentation along with the images. 
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