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Abstract 

The edges of highly-connected symmetrical graphs are colored so that they form Hamiltonian 
cycles. As an introduction we discuss the coloring of the complete graphs K2m+ 1 for m> 1, but the 
focus is on the graphs resulting from symmetrical perspective projections of the edges of the regu

.Iar 4-dimensional polytopes into 3-space. The goal is to color all edges in these graphs with multi
ple congruent copies of Hamiltonian cycles exhibiting as much symmetry as possible. 

Figure 1: Map of Konigsberg (a) and equivalent graph (b). 

1. Introduction 

In 1735, Euler learned of.a popular problem in the town of Konigsberg: Is it possible to cross all seven 
bridges in this town exactly once and then return to the starting point? This can be seen as a graph problem. 
With a suitable degree of abstraction, the city map can be reduced to a graph (Fig. 1 ) with just seven edges, 
i.e., the seven bridges, and with just four nodes representing the quarters in town from which these bridges 
emerge. Euler quickly showed that the desired tour was not possible, and as a generalization of the Konigs
berg bridge problem, also showed (without proof) that a connected graph has an Eulerian circuit iff it has 
no vertices of odd valence. In this context, let's review the following definitions: 

• Euler Path: A path on a graph whose edges consist of all graph edges. 

• Eulerian Circuit (or Cycle): An Eulerian path that starts and ends at the same vertex. 
- In other-words, it is a graph cycle that uses each edge exactly once. 

• Hamlltonian Path: A path on a graph that visits each vertex exactly once. 

• HamUtonianCircuit (or Cycle): A Hamiltonian path that is simultaneously a graph cycle. 
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The general goal is to cover a graph completely by using several Hamiltonian cycles. If this can be 
achieved, then the individual cycles can readily be stitched together at vertices through which more than 
one cycle passes, and this combination would then readily yield also an Eulerian Circuit. 

However, we are specifically interested in the coloring of graphs of high symmetry while maintaining 
as much of that symmetry as possible in our edge coloring. Specifically we will look at the 6 graphs that 
result from symmetrical perspective projections of the edges of the six regular 4-dimensional polytopes 
into 3-space. The simplest ones can be done with just two colors; but the regular 600-Cell with 120 vertices 
and 720 edges needs six colors, since each one of its vertices is of valence 12. In all cases, we would like to 
find colorings that consist of mutually congruent Hamiltonian cycles - no matter how many are involved. 

To set the stage, let's briefly look at a couple of examples of edge graphs resulting from 3D regular sol
ids. For instance, can we find a solution of the desired type of path for the cube? We can readily see that an 
Eulerian cycle cannot exist, since not all valences are even. Neither can we find an Eulerian path, since 
there are more than two vertices of odd valence. On the other hand, we can readily find a Hamiltonian 
cycle (Fig.2a). But we cannot complete the coloring of this graph with a second Hamiltonian cycle, since 
there are only four uncolored edges left. From this example we can readily infer, that our desired solutions 
also requires that all the vertices in the graph are of even valence. 

Figure 2: Hamiltonian cycles on the cube (a), the octahedron (b), and the cuboctahedron (c). 

Among the Platonic solids, the octahedron is the only one whose edge graph meets this criterion. And 
indeed, it is possible to cover all 12 edges with two disjoint Hamiltonian cycles. With a little bit of experi
mentation we can even make these two cycles to be congruent (Fig.2b). On the cuboctahedron we can also 
find two complementary congruent cycles that individually show C2 symmetry (Fig.2c). 

2. Complete Graphs 

Now let's step up to larger challenges! But let's only consider graphs with all even vertices, and let's focus 
on highly symmetrical graphs. First we demand topological symmetry, i.e. all vertices should have the 
same valence and also should have the same connectivity to other vertices. A first source of such graphs 
are the fully connected graphs of n nodes, Kn, in which obviously all vertices are topologically identical. 
However, we need to limit ourselves to odd n, so that all the nodes have even valence. 

Figure 3: K3, Ks, and K7, and their coverage with Hamiltonian cycles (a,b,c). 
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To obtain graphs that also have a high degree of geometrical symmetry, we arrange these nodes regu
larly on a circle in the plane so that the convex hull of the arrangement is a regular n-gon. K3 has a trivial 
solution (Fig.3a). K5 and K7 readily offer nice solutions that preserves the 5-fold symmetry (Fig.3b) and 7-
fold symmetry (Fig.3c), respectively; however, the different paths are not congruent. 

To obtain the desired congruent paths, we need to start with a different arrangement of the vertices in 
the plane. We only put n-l veltices onto a circle to form a regular polygon and then put the last node into 
the center of the circle. We note, that in the graph with 2m+ 1 nodes, the valences of the vertices is 2m, and 
thus we will need a total of m Hamiltonian cycles, and each cycle must pass through each vertex. Since the 
outer polygon has 2m sides, it follows that in a symmetrical arrangement every path would color two of 
these edges - for instance the two opposite ones, so that we obtain an almost-C2 symmetry for each path. 
The inner edges in this graph come in a variety of different lengths, but for each type there are 2m copies, 
except for the maximal diagonals that directly connect opposite vertices, for which there are only m copies. 
With this, a simple and regular pattern emerges for coloring a subset of these edges so as to form a Hamil
tonian cycle: We form a: zigzag path and then connect the ends of this path with one of the maximal diago
nals (FigAd). The superposition of m such paths, properly rotated by an angle of 180lm degrees, will 
achieve the desired symmetrical coloring (FigAa-c). 

Figure 4: K5, K7, K9, covered with congruent Hamiltonian cycles (a,b,c), and one cycle of Kll (d). 

3. The Simple Regular 4D Polytopes 

In four dimensions there exist six regular polytopes [1]. Table 1 summarizes some of their salient geomet
ric fe~tures and lists the valence v of the vertices, the number w of faces (or cells) sharing each edge, the 
number n of sides on each face, and the type of cell that makes up the shell of each polytope. Many differ
ent symmetric edge projections from 4D to a 3D subspace have been discussed and illustrated in [2]. We 
will focus on close-up perspective cell-first projections, where the whole 3D image is completely con
tained within a single outer cell. These projections maintain a high degree of symmetry and have no coin
ciding vertices or edges. 

Table 1: Characteristics of the Regular Polytopes in 4D 

Simplex Tesseract 16-Cell 24-Cell 120-Cell 600-Cell 

# Vertices 5 (v=4) 16 (v=4) 8 (v=6) 24 (v=8) 600 (v=4) 120 (v=12) 

# Edges 10 (w=3) 32 (w=3) 24 (w=4) 96 (w=3) 1200 (w=3) 720 (w=5) 

# Faces 10 (n:3) 24 (n=4) 32 en:3) 96 (n=3) 720 (n=5) 1200 (n=3) 

# Cells 5 (tetra) 8 (cube) 16 (tetra) 24 (acta) 120 (dodeca) 600 (tetra) 
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We now try to find congruent Hamiltonian cycles that will fully color the edge graphs of these six 
polytopes. We start with the three least complex ones, where the solutions can readily be found by trial and 
error. The 4D simplex can be covered by two identical Hamiltonian cycles that nicely complement each 
other (Fig.Sa). The 4D cross polytope (l6-CeU), however, requires three colors, since all vertices are of 
valence 6. A very attractive symmetrical arrangement of three congruent paths has been found (Fig.Sb). 

Figure 5: Hamiltonian cycles on the 4D simplex (a) and cross polytope (b). 

The hypercube requires only two Hamiltonian cycles, since all its vertices are of valence 4. Two differ
ent valid coloring schemes - out of many possible ones - are shown in Figure 6. The second one (Fig.6b) , 
best meets our stated goals, as it transforms one path into the other with a simple 90°-rotation around the 
axis perpendicular to the image plane. 

Figure 6: Two Hamiltonian path colorings of the 4D hypercube. 

4. The 24-CeH 

The 24-CeU has 24 vertices and 96 edges, and thus its graph is more challenging. Four Hamiltonian 
cycles are needed, since all vertices are of valence 8. Given the obvious 4-fold symmetry at each vertex, it 
seems natural to consider a C4-axis for replicating the identical Hamiltonian cycles. To make the search for 
a suitable solution more tractable, I used a structured approach that exploited the shell-based symmetry of 
this object. The cell-first projection consists of three highly symmetrical nested wire frames (octahedron, 
cuboctahedron, and octahedron) and two "connector sets" that link subsequent shells. If we want to obtain 



Mathematical Connections in Art, Music, and Science 215 

an overall scheme in which the four colors transform into one another by cyclic rotations in steps of 900 

around a single C4-axis, then that symmetry has to be re:IJected on each shell and also on the two connector 
sets. Thus I started by designing some pleasing C4-symmetric color arrangements for the octahedral and 
cuboctahedral shells. I also developed a simple interactive computer graphics visualization program that 
allowed me to rotate these shells individually around their common C4-axis, while trying to find combina
tions of connector edges that would connect all edges of the same color into a single Hamiltonian cycle. 
This approach decomposes the complex problem into a few tractable modules and moves. With the help of 
this program, I could find a first solution in less than two hours (Fig.7a). 

Figure 7: Four Hamiltonian cycles on the 24-Cell (a) emerging from one another by a 90-degree rotation, 
and (b) by moves from the tetrahedral symmetry group. 

If we follow one of the Hamiltonian paths and record its progress from one shell to the next, we find 
the shell visitation schedule shown in Figure 8a. In this schematic, the top row of six dots represents the 
vertices of the outermost large octahedron. The bottom six dots correspond to innermost octahedral shell, 
and the twelve dots in the middle represent the intermediate cuboctahedral shell. In this schedule, each path 
has four sections of three consecutive edges that lie on the same shelL These sections are joined in a some
what irregular manner. Another schedule is shown in Figure 8b. In this plan, no two edges are visited con
secutively on the same shell. This schedule looks more regular and symmetrical. Can we possibly further 
enhance the symmetry of the colored wire frame shown in Figure 7a by switching to a different schedule? 

(a) (b) 

Figure 8: Two different shell-visitation schedules for the 24-Cell 

The projection of the 24-Cell that we have used has not only C4-symmetry. It has also C2 and C3 sym
metry axes, and overall obvious cuboctahedral and tetrahedral symmetries. Let's aim for a color arrange
ment with more symmetry than just one C4 permutation axis, e.g. a tetrahedral permutation group, as 
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shown in Figure 9a, and more schematically in Figure 9b. The rotations around each of the four CTaxes, 
leave one color in place, while the other three are cyclically permuted for each rotation of 1200 around the 
CTaxis. There are also three CTaxes, where a 1800 rotation switches two pairs of colors simultaneously. 

Clearly, each individual shell must adhere to the chosen symmetry group. Thus we first need to find 
suitable colorings for the octahedral and cuboctahedral shells. One solution each is shown in Figures 9a 
and 9c, respectively. Note that the individual shells may have some additional symmetries, that are not 
present in the overall constellation. For instance, the octahedral shell (Fig.9a) exhibits three C4-axes that 
cyclically permute all four colors; but such an axis is not present in the colored cuboctahedral shell. Notice 
also that there are no connected edges of the same color on any of these shells, in agreement with the shell 
visitation schedule shown in Figure 8b. 

Figure 9: Tetrahedrally symmetrical coloring applied to the shells of the 24-Cell 

Now we can try to complete the tetrahedral coloring for the 24-Cell by nesting the suitably pre-colored 
shells and subsequently trying to link them with properly colored inter-shell connector edges, so that all 
edges of a particular color form a single Hamiltonian cycle. It is obvious that the different shells need to be 
aligned in such a way that they respond in the same cyclic manner to the color permutations around any of 
the symmetry axes. This dramatically reduces the search space for possible constellations that may yield 
congruent Hamiltonian cycles. Even with this insight, it still took me many hours spread over several days 
to find a valid solution. The reason was that I did not realize at first that the two octahedral shells can be 
arranged in more than one valid orientation with respect to one another. The second possibility, which is 
the one used in the final solution, emerges from the first one by a point inversion through the center. 

Figure 10: Physical models of the 24-Cell: Pipe-cleaner model (a), 3D-Color-Print [4J (b). 
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5. The 120-Cell 

Before I had found the solution for the 24-Cell and devised the shell-based approach, Mike Pao, an under
graduate res~cher, had joined my quest and set out to find the desired solutions on the two most complex 
polytopes by computer search. He ftrst programmed a brute-force backtracking search for two congruent 
Hamiltonian cycles of length 600 on the perspective projection of the 120-Cell. We tried to reduce the 
depth of the search by looking for inherent symmetries that we might ftnd in this path. However, we 
quickly convinced ourselves that these Hamiltonian cycles cannot exhibit a high degree of symmetry. Nei
ther 3-fold nor 5-fold symmetry will be possible. To prove this, consider for instance the edges circling a 
pentagonal face around a potential Cs symmetry axis. The only way to maintain 5-fold symmetry with a 2-
color scheme would be to make them all the same color. However, this would form a sub-cycle of length 5 
- which is not allowed. 

We cannot even expect C2 symmetry for this path! Consider the edges in the dodecahedral convex hull. 
Any possible C2-axis must go through the middle of two opposite edges. There is then exactly one pair of 
opposite edges that are parallel to this C2 symmetry axis. These two edges transform into one another in a 
1800 rotation around the C2-axis; thus they must be of the same color. But this leaves no equivalent edge
pair for the congruent path, which needs to have the same C2-axis. 

Congruence between the two Hamiltonian cycles has precedence over the symmetry of an individual 
path. An elegant way to obtain two congruent paths for the price of one in the projection of the 120-Cell is 
to simply assign opposite edges in this graph to the two different paths. Mike Pao implemented a simple 
search algorithm that tried to add one pair of complementary path segments at a time. This was not suc
cessful; it routinely "painted itself into a comer." The furthest we ever got was to a length of 550 segments 
after a run time of many hours. This is actually not too bad, considering that ft~ding even a single Hamilto
nian cycle is known to be an NP-hard computational problem. 

Figure 11: Pentagonal double shell (a) compared with the full graph that needs to be colored (b). 

To clarify the issue of what symmetries can be expected for this graph, we studied a simpler problem. 
Two nested pentagonal shells connected with radial struts form a graph with the same symmetry and which 
also has all vertices of valence 4. We found a nice solution with a shell-based approach (Fig. 11 a). First I 
chose a left-right symmetrical 2-color pattern for the radial struts. Next I looked for a coloring of the outer 
shell that kept opposite edges at different colors, and which did not have any obvious flaws, such as merg
ing three edges of the same color in one vertex. Then the question arose, whether a similar flawless pattern 
could be found for the inner shell, which at the same time would complete the path fragments on the outer 
shell into a single Hamiltonian cycle. It turned out that simply mirroring the pattern from the outer shell 
left-to-right did the trick! Now we are hopeful that a similar structured, shell-based approach will eventu
ally yield the desired solution also for the complete 120-Cell projection (Fig. lIb). 
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6. The 600-Cell 

We also tried a basic backtracking search for the 600-Cell (Fig.12a). Here we need six different cycles, 
since each vertex has valence 12, but the cycles are much shorter, having only 120 segments. To reduce the 
danger of painting ourselves into a comer, we employed a cycle-expanding strategy. We started with a sin
gle triangle and then replaced one edge with the two other edges of an adjacent triangle, hinged to the 
replaced edge. Thus we always maintain a closed circuit, which can readily be expanded where there are 
still vertices that have not yet been touched by the Hamiltonian cycle. This strategy very quickly allowed 
us to find a first complete Hamiltonian cycle of length 120. Later, by enforcing a 3-fold cyclic symmetry 
around a chosen C3-axis, we also were able to construct three congruent full-length cycles concurrently. 

Figure 12: 3D Print of a perspective projection of the 600-Cell (a) and a possible coloring scheme (b). 

But that is where the brute-force algorithm ran out of power. We were not able to add a 4th cycle to the 
existing three Hamiltonian cycles. We then tried to construct all six cycles in parallel while observing an 
overall tetrahedral symmetry for the edge coloring (Fig.12b). We also made use of the inside-outside sym
metry observed in the shell schedule (Table 2) and assigned "diametrically opposite" edges (which would 
be opposites in the 40 original) the same color, so that our search algorithm would have to advance only 
through 60 moves to complete the overall task. We were able to complete up to 54 out of 60 moves, using 
some limited manual control over the path building process. At this point we decided to employ the more 
structured approach based on individually colored shells that had led to success for the 24-Cell. 

7. The Shell-Based ~pproach 

From the insights gained with the 24-Cell, a strategy emerged that should allow us to find the desired col
orings of the edge graphs also. for the two "monster" polytopes - the 120-Cell and the 600-Cell. We ana
lyze the perspective projections of these polytopes by sorting all vertices into shells according to their 
distances from the origin. We also sort all edges into either intra-shell edges (connecting vertices of the 
same shell), or inter-shell edges (connecting two different shells). All these individual subsets of edges can 
now be analyzed separately as to the possible coloring patterns that are compatible with the chosen overall 
color symmetry. Now we only have to choose options from this rather limited set of possible shell color
ings and check the combinations of such colorings for the formation of the desired Hamiltonian cycle. This 
reduces the size of the search domain substantially. 

For the 600-CeU, we find that there are 15 discrete shells. Eight of them have intra-shell edges. But 
they are relatively sparse; no shell has more than 12 edges. Table 2 shows the complete connectivity within 
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and between shells that will be covered by a one of the six Hamiltonian cycles. Notice that all of the spe
cific connector sets between any two shells are also rather sparse; at most we have to select 4 out of 24 
edges for our sought-after prototype path. 

Table 2: Shell and Connector Schedule for the 600-Cell 

sO s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 sl1 s12 s13 s14 

sO 1 

s1 2 0 

s2 2 2 0 

s3 2 2 4 2 

s4 2 2 4 2 

s5 2 4 4 1 

s6 2 0 2 0 

s7 2 4 4 2 0 

s8 2 0 0 2 0 

s9 2 4 0 4 2 1 

s10 2 2 4 0 4 2 

s11 2 2 4 4 2 

s12 2 2 4 0 

s13 2 2 2 0 

s14 2 2 2 1 

To maintain congruence among the six Hamiltonian cycles, we set up five transformations that copy the 
prototype path into its five differently colored siblings. It took us several weeks to realize that these five 
transformations (together with the identity) need not form a group, and that indeed for our particular graph, 
they cannot do so. The transformations we chose finally first flip the prototype path around the y-axis by 
1800 (Fig. 13a). Then we rotate this pair twice through 1200 around the {III }-axis (Fig. 13b). 

Figure 13: Symmetry transformations for coloring the 600-Cell projection (a,b,c,d). 

Given that we have to accommodate six different colors in the same permutation pattern in every one 
of the above rather sparse edge collections, we expect only a limited number of possible constellations for 
each shell or connector set. For shells sO, s5, s9, and s14, where we have only 6 edges each, the color pat
tern must correspond to a tetrahedron with six differently colored edges. (Note that this is a different tetra
hedral color permutation from the one shown in Figure 9a). For the new transformation pattern, there are 
only four places on the tetrahedral frame where that prototype edge can be placed so that it will be trans
formed into a full coverage of all tetrahedron edges. (Edges crossing the y-axis will map onto themselves). 
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The shells with 12 edges have a typical configuration that corresponds to an "exploded" tetrahedron with 
four separated faces. We can choose the placement of a first prototype edge freely (Fig. l3c), and the sec
ond one with some constraints so as not to interfere with the siblings of the first one. The most complex 
shells with 24 edges (Fig.l3d) decompose into two half-shells with 12 edges. Notice, that Table 2 also 
shows an inside-outside symmetry. We believe that the color-assignment work can be cut in half if we 
apply the same coloring pattern (after also applying a point inversion at the center) to sibling shells whose 
index labels add up to 14. This same inside-outside symmetry pattern is also observed on the 24-Cell 
(Fig. lOb) and in the pentagonal double shell (Fig.lla). 

With the QOO-Cell, we went through several false starts with the type of symmetry that we built into 
our search, and we only gained clarification of these issues after we had constructed a simpler "place
holder" problem that reflected some of the salient features of the graph that we try to color. As for the case 
of the 120-Cell, we were looking for a simpler graph with fewer shells but with the same inherent symme
tries. But this time, even constructing the reduced graph was a rather challenging task. First, all its vertices 
need to be of valence 12; we like it to be of high symmetry; and we like to avoid edge intersections. The 
last two criteria directly contradict each other. Drawing on ideas from Section 2, we thought of using the 
complete graph K 13 implemented as a dodecahedral set of points, augmented with one node at the center. 
However, this graph is full of edge intersections, and it does not resemble well enough the tetrahedral 
shape of our real problem graph. After much searching, we found a nested assembly of two tetrahedral 
shells and two icosahedral shells, with a total of 192 edges, to give us the desired object with the proper 
graph properties (Fig.14). First we convinced ourselves that the icosahedral shells could be colored with 
the same permutation pattern shown in Figure 13. Actually, for this pattern, the icosahedral shells of 30 
edges can be decomposed into three sub-shells with not more than 12 edges, which can be colored inde
pendently. We created a computer graphics utility that allowed us to permute the colorings of these sub
shells interactively by manipulating some sliders (Fig. 14b). With the help of this interactive utility, it took 
me typically about 5 to 10 minutes to construct a new "legal" color assignment for all the shells and their 
mutual connectors, so that at every vertex exactly two edges of each color join. In an hour of experimenta
tion I found several colorings in which the edges of one color formed two, three, or four cycles. Finally I 
found one solution where the desired single cycle was formed - at which point I happily stopped my 
search. The insights gained in this exercise will be directly applicable to solving the puzzle of the projec
tion of the 600-Cell. 

8. Symmetry Considerations 

The shell-based approach dramatically reduces the depth of the search tree when trying to compose a 
Hamiltonian cycle. The approach is based on an a_priori assumption that the a set of congruent cycles 
actually exists. We can further reduce the search space by "building-in" some additional assumptions about 
the symmetries that might be exhibited by each individual path. It is a daring leap of faith to assume that 
such solutions with a high degree of overall symmetry actually exists, and if it works, the pay-off will be 
substantial. If our algorithm fails to find a solution, then we will need to relax some of our "constraints" 
and work through a correspondingly larger search space. 

Any constraints regarding desired symmetries must be chosen very cautiously, because it is so easy to 
ask for something impossible. Our first trials with the 600-CeH were clearly misguided. The overall tetra
hedral shape readily led us to trying to find a funy tetrahedral solution. However, the group of the oriented 
tetrahedron has 12 members, while we only need 6 copies of our Hamiltonian cycle. This then suggested 
that we might try to use the three Cz-axes that are part of the tetrahedral group to build in some C2 symme
try into each path itself. This may indeed lead to symmetrical colorings of the graph, but the Hamiltonian 
cycle will then disassociate into several smaller loops, if the path crosses the C2 symmetry axis more than 
twice; and it must cross the axis for every vertex that lies on it! 
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A symmetry group with the right number of members might be S6' This group forces us to choose a 
dominant CTaxis; S6 then introduces a mirroring operation on a plane perpendicular to this axis that will 
introduce a glide symmetry. Any object belonging to that sym.nietry group can readily be stretched in the 
direction of the rotational axis without loosing any of its symmetry. But when we apply this operation to a 
tetrahedron - now seen as a 3-sided pyramid - it becomes readily apparent, that the "bottom" edges and the 
"longitudinal" edges are not equivalent and that there is no S6-symmetry operation that will map one type 
of edge into one of the other type! 

However, this S6-symmetry may exist in the 4-dimensional original. The 4D polytopes posses much 
more symmetries than their projections to 3D. Initially the 4D polytope graphs have all the symmetries 
exhibited by any of their cells. A particular projection to 3D then suppresses many of these symmetries. 
Thus we may also want to investigate what symmetries for the Hamiltonian cycles exist in 4D and how 
much of that symmetry can be salvaged for the 3D projections. 

Figure 14: Hamiltonian coloring of the icosi-tetrahedral double shell (only 3 of the 6 paths are shown) (a) 
and slider menu to control the coloring permutations (b). 

9. Resulting Sculptures 

In the spirit of the Bridges conference, it remains to be explored, whether any artistic artifacts may result 
from these mathematically determined models. First we notice that the Hamiltonian cycle on the cubocta
hedron (Fig.2c) is equivalent to the rim of my Volution sculptures [3]; thus we can intersperse two mirror 
copies of that surface forming an intriguing pair of intersecting shells (Fig. 15a). 
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The cycle on the 4D-Simplex (Fig.Sa) can be represented with an undulating sweep suitably deformed 
so it forms an intriguing link (Fig.lSb). The topology of the three Hamiltonian cycles on the cross polytope 
poses a greater challenge, since now three ribbons pass through each vertex. Rather than forming a compli
cated link at each node, I chose to bond the three ribbons together with a little sphere (Fig.15c). In all these 
sculptures, I wanted to make the continuation of each path obvious from its geometry alone, regardless of 
the applied coloring. 

Figure 15: Sculptures derivedfrom: Cuboctahedron (a), 4D-Simplex (b), 4D Cross Polytope (c). 

10. Conclusions 

One of our goals was to find mutually congruent symmetrical cycles for all six regular 4D polytopes. On 
the two large ones we have not yet reached our target. It is interesting to note that all the'solutions pre
sented in this paper have been found manually, and that the more brute-force computer searches have not 
yet been successful. This demonstrates that understanding the structure of these large problems is crucial 
and that taking symmetry into consideration in an aggressive manner can make a huge contribution. The 
shell-by-shell approach to coloring looks promising, and in combination with some computer-assisted 
search and verification, we expect it to yield complete solutions for the two "monster polytopes". Our intu
ition, honed on the simpler four regular 4D polytopes, and in particular our solutions of the 24-Cell and our 
studies of the partial shell assemblies with the symmetries of the two large projections, tell us that there is 
a high probability that interesting "congruent" cycles can also be found for the remaining two cases - even 
though their full symmetry may only be apparent in 4-dimensional space. 
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