
BRIDGES
Mathematical Connections

in Art, Music, and Science

The Reflected Binary Gray Code Transform

Steve Whealton
1725 Kilbourne Place, NW

Washington, DC 20010-2605, USA
E-mail: swhealton@ctsmd.com

Abstract

The "Reflected Binary Gray Code" is a system of representing numbers using zeroes and ones. It is closely allied
to the familiar binary system for representing numbers, also using zeroes and ones. It is easy to switch back and
forth between one system and the other. This paper examines this "transform" that switches back and forth, and
focuses especially upon the uses to which this transform can be put.

1. What is a Gray Code?

1.1. General Definition. A Gray Code is a system where similar patterns are represented similarly.
More precisely, any two adjacent numbers (numbers whose difference is one) must have their Gray-Code
patterns differ in only one place. Even there, those two patterns may differ only by one unit.

1.2. Background. Frank Gray worked for Bell Labs during the 1930s through the 1950s. He received
U.S. patent 2632058 for the Gray Code in 1953 [1]. Legend has it that it was George Stibitz (1904-
1995), also at Bell Labs, and not Gray, who first "invented" the Gray Code. The French engineer Emile
Baudot had used Gray-code-like ideas in telegraphy in 1878. He received the French Legion of Honor
medal for his work.

2. The Gray Code

2.1. Reflected Binary Gray Code. There are myriads, even infinities, of legitimate Gray Codes. Out of
this multitude, one particular realization of the Gray Code criterion has come to be the most important and
useful. Its proper full name is the "binary reflected gray code" (BRGC). For most people who use it or
know about it, it's simply "The Gray Code."

The word, "binary" acknowledges the fact that The Binary Reflected Gray Code is a system of
representing numbers using ones and zeroes, and also that it is a cousin of the familiar system of
representing numbers using ones and zeroes that computers regularly utilize. It is a cousin so close that
one can easily switch back and forth between regular base-two bit-patterns and BRGC bit-patterns for any
given integer.

What the Binary Reflected Gray Code transformation (BRGCT) does is to take any positive integer
and find that number whose regular bit-pattern is the BRGC bit-pattern for the original integer. Except for
the numbers one and zero, this second number is always different from the first one.

Besides meeting the Gray Code criterion about representing numbers near one another similarly, the
BRGCT has many other useful and beautiful properties.

2.2. Programming. The BRGCT is almost embarrassingly easy to program. This is the case because
many programming languages have the two necessary procedures built right into them. At code level, too,
the entire procedure is simple and straightforward.

150 2004 Bridges Proceedings

One of the two procedures is what one might call "fixed-point division." In BASIC, this operation has
even been given its own symbol, the "\". Thus, "a = b \ e" would mean to divide "b" by "c," to select "a"
as the quotient, and then finally to throwaway the remainder.

The other procedure is designated by "XOR" in BASIC and by the "1\" symbol in C and in C++. Its
name comes from logic, and from the phrase "exclusive or." In everyday English, one thinks first of
taking one thing or another, but not both.

From its beginnings in the realms of logic, the "XOR" notion has evolved into an operator that can be
used between two whole numbers. This operator considers comparable bits, applying the "one or the other
but not both" idea to produce a result. It is equivalent to bitwise addition, modulo two, and also to Nim
Addition.

To find the BRGC Disguise (equivalent) for any· given integer, one must fIrst halve the number,
throwing away the remainder. One must make sure that the original number is also retained. The final
step is simply to perform the XOR operation between the original number and the halved-and-trimmed
number.

The result is the BRGC equivalent.

BRGC(x) = x XOR (x \ 2) [BASIC]

brge = x 1\ trunk(xl2); [C++, Java, &e.]

3. Using The Gray Code

3.1. Transforms. In looking for ways to disguise numbers usefully, one hopes to find a few interesting
combinations of regularity and irregularity. With the BRGCT, such combinations abound.

For one thing, the BRGCT equivalent of a number is usually just a little bit smaller or a little bit larger
than the original number itself. It can never be less than half of the parent number, nor more than double
it. Except in the cases of zero and one, it also can never be the number, itself.

What happens when the BRGCT were used over and over, taking the output of one application of the
BRGC and treating it as the input for an additional BRGC transformation?

If the BRGCT algorithm is applied agirin and again, the original number eventually returns. The
question of how soon it will return leads to perhaps the single most fascinating and useful of the BRGC's
qualities.

It happens that "10" is the BRGC-equivalent bit-pattern for three, whereas "11" is the BRGC bit
pattern for two. So one could say, using BRGC notation, that BRGC(2) = 3 and also that BRGC(3) = 2.
Similarly, BRGC(O) = 0 and BRGC(I) = 1. Moving through the next few numbers, we find that
BRGC(4) = 6, that BRGC(5) = 7, that BRGC(6) = 5, and that BRGC(7) = 4.

At this point, we can also see that 0 and 1 exist in cycles of length one; that 2 and 3 belong to a cycle
of length two; and that 4, 5, 6, and 7 belong to a cycle of length four.

It happens that all the numbers between 4 and 15 are members of cycles of size four, while all the
numbers between 16 and 255 are members of cycles of size 8. That is as high as I've investigated

Mathematical Connections in Art, Music, and Science 151

exhaustively. But my intuition, along with a few random testings, suggest that for all numbers between
256 and 65535 the cycles are of size 16.

Before listing cycles for numbers larger than 7, a few terms will be defined. The length of a cycle is
one more than the number of transformations necessary before encountering a number already in the
given cycle. The head of a cycle is the smallest number in it. The tail of a cycle is the final number in the
cycle begun with the head. Note that the tail is not necessarily the largest number in a cycle, though
sometimes it will be. Note that BRGC(tail) = head, for any cycle.

Next, the cycles already described, using the above terms.

The length of the first cycle is one. Its head and tail are both zero. In the second cycle, the length is
again one, whereas this time the head and tail are both one. In the third cycle, the length is two, the head
is two, and the tail is three.In the fourth cycle, the length is four, the head is four, and the tail is seven.

But the tail is seven not because it is the largest number in the cycle, but rather because it is the
number that immediately precedes four, which is the smallest number.

Below are listed the cycles for all integers between 0 and 255, inclusive. Each list begins with the
cycle's head, and ends with its tail.

Cycles of Length One
o I 1

Cycle of Length Two
2 3

Cycles of Length Eight
Set One - Two Cycles

16 24 20 30 17 25 21 31 I 18 27 22 29 19 26 23 28

Cycles of Length Eight
Set Two - Four Cycles

32 48 40 60 34 51 42 63 I 33 49 41 61 35 50 43 62
36 54 45 59 38 53 47 56 I 37 55 44 58 39 52 46 57

Cycles of Length Eight
Set Three - Four Cycles

64 96 80 120 68 102 85 127 I 65 97 81 121 69 103 84 126
66 99 82 123 70 101 87 124 J 67 98 83 122 72 100 86 125

152 2004 Bridges Proceedings

Cycles of Length Eight
Set Four - Four Cycles

72 108 90 119 76 106 95 112 I 73 109 91 118 77 107 94 113
74 111 88 116 78 105 93 115 I 75 110 89 117 79 104 92 114

Cycles of Length Eight
Set Five - Eight Cycles

128 192 160 240 136 204 170 255 129 193 161 241 137 205 171 254
130 195 163 243 138 207 168 252 131 194 163 242 139 206 169 253
132 198 165 247 140 202 175 248 133 199 164 246 141 203 174 249
134 197 167 244 142 201 173 251 135 196 166 245 143 200 172 250

Cycles of Length Eight
Set Six - Eight Cycles

144 216 180 238 153 213 191 224 145 217 181 239 152 212 190 225
146 219 182 237 155 214 189 227 147 218 183 236 154 215 188 226
148 222 177 233 157 211 186 231 149 223 176 232 156 210 187 230
150 221 179 234 159 208 184 228 151 220 178 235 158 209 185 229

3.2. Using the BRGCT. Taken together, the diverse features of the BRGCT make it a useful tool.
Equally important, when a simple BRGC disguise is used with one or more numbers being fed into a
simple formula, the musical or visual result is quite often an interesting one. Let us now examine a few of
the ways that it can be used.

3.3. Designing a Good Transform. First, a brief discussion of criteria and for designing
transformations. One of these criteria is what one might informally call a certain kind of neatness.

Suppose one is inventing a transformative algorithm to operate only upon the integers from 0 through
255. It seems somehow much cleaner and in many ways also much more useful if this transformation of
ours will be one-to-one. That is to say that if one makes a chart showing all 256 of the integers from 0 up
to 255 along with their transformed equivalents, each number will appear once and only once on both
sides of the chart. There are basic terms for these qualities, some of them being "into," "onto," and
"isomorphic. "

Most of the time, one must insist that the transformation amount to an isomorphism.

What will happen when the transformation is applied over and over again (iteration)? There are 256!
Permutation$ of the integers betw~n 0 and 255, and therefore there are that same vast number of
isomorphic transformations.

3.3. Brevity and Ease. Of these isomorphic transformations, only those that can be defined with ease
and brevity are useful. After all, anyone of the 256! transformations can be "defmed" simply by stating
the equivalent for each of the 256 numbers. This could be called a "hard-wiring" method.

Useful transformations strive to be briefer than this. To achieve such brevity, one must make use of the
tools available to us in one's programming language of choice, along with whatever mathematical notions
can be devised.

Mathematical Connections in Art, Music, and Science 153

3.4. Cycles with the BRGCT. The BRGC transformation does not treat each number similarly in the
cycles that it produces. Recall that the BRGCT creates two cycles of length one, one cycle of length two,
three cycles of length four, and thirty cycles of length eight.

One might characterize this breakdown as "diversity, but not chaos."

Why is such a balance between regularity and irregularity pleasing? There are two answers to this.

Deeper, perhaps, is the fact that one might prefer a balance between the two extremes of over
regularity and total randomness. But on a more practical level, there is also an advantage in having cycles
of varying lengths. This advantage can be seen by examining a few of the ways in which transformations
can be used.

3.6. Changing Color Index Numbers. Many pictures are made by recoloring images that have been
created outside the computer. Scanned, 8-bit paletted bitmaps of photographs or paintings are often the
starting point. A piece of paint, metal, leaf, or bark might also be used as a beginning.

When using picture-making software that can only transform 8-bit imagery, one is forced to render all
bitmaps into the 8-bit, paletted, format. In more directly mathematical terms, this means that each image
can be thought of as a vast array of integers, each of one of which is eight bits in length, between 0 and
255.

Before a picture is submitted for mathematical pixel-by-pixel transformation, it must fIrst have been
rendered into the requisite eight-bit format. Typically, one uses one of the well-known software packages
(e.g. Adobe PhotoShop, Corel PhotoPaint, JASC Paint Shop Pro.) to reduce the original 24-bit "tru~
color" images produced by my camera or scanner to the 8-bit paletted format required by my algorithmic
software.

Basically, the 256 colors that these applications create are chosen in such a way that the resulting
picture will resemble the 24-bit original image as closely as possible. So the original image's most
common colors, broadly speaking, appear in the palette that is created, while the rarer colors have to be
left out.

Once the 256 most representative colors are cobbled together by the software, all of the image's pixels
are fudged to whichever color in the palette is deemed closest in some useful sense to the pixel's original
color.

IDustrations

Figure 0: Small interior portion of my scanned painting, "Buffalo #5. "

154 2004 Bridges Proceedings

•.. ,.,.''':. -;.,

Figure 1: Buffalo #5, as transformed by 1 application of BRGCT to Power Numbers. "
~~'

Figure 2: Buffalo #5, as transformed by 2 it(!rations of BRGCT, using Power Numbers. "

Figure 3: Buffalo #5, as transformed by 3 iterations of BRGCT using Power Numbers. "

Figure 4: Buffalo #5, as transformed by 4 iterations of BRGCT, using Power Numbers. "

Mathematical Connections in Art, Music, and Science 155

Figure 5: Buffalo #5, as transformed by 5 iterations of BRGCT, using Power Numbers. "

Figure 6: Buffalo #5, as transformed by 6 iterations of BRGCT, using Power Numbers. "

Figure 7: Buffalo #5, as transformed by 7 iterations of BRGCT using Power Numbers."

References

[1] F. Gray, Pulse Code Communication, U. S. Patent 2 632 058, March 17, 1953.

[2] F. G. Heath, "Origins of the Binary Code", Scientific American v.227,n.2; August, 1972,
p.76.

[3] Martin Gardner, "Mathematical Games", Scientific American v.227,n.2; August, 1972, p.106.

[4] William H. Press, et al., Numerical Recipes in C, Second Edition; Cambridge University
Press, 1992.

156 2004 Bridges Proceedings

[5] Paul Horowitz and Winfield Hill, The Art of Electronics, Second Edition; Cambridge
University Press, 1989.

[6] Dexter Kozen, The Design and Analysis of Algorithms; Springer-Verlag, New York, NY,
1992.

[7] Edward M. Reingold, et aI., Combinatorial Algorithms Prentice Hail, Englewood Cliffs, NJ,
1977.

[8] David E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning;
Addison-Wesley, Reading, MA, 1989.

[9] R. B. Hollstien, Artificial Genetic Adaptation in Computer Control Systems PhD thesis,
University of Michigan, 1971.

[10] Albert Nijenhuis and Herbert S. Wilf, Combinatorial Algorithms, Academic Press, Inc.,
New York, San Francisco, London 1975.

