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Abstract 

Generative art systems usually rely on the technique of user-guided evolution to enable "artists" 
to interactively search through populations of images in order to breed those images which show 
aesthetic promise. We consider algorithmic criteria for automating the aesthetic evaluation step. 
Our criteria are inspired by a recent description of techniques used for controlling the aesthetic 
reorganization of photorealistic imagery. Surprisingly, our approach seems to impose a rigid 
style on the images we evolve. A drawback to our method is that eventually it fails to clearly 
differentiate between non-degenerate and degenerate images. We consider how improvements 
might be made. 

1. Introduction 

It is difficult to formulate general purpose aesthetic metrics for visual imagery. The human 
visual system is both complex and sophisticated. Moreover, human aesthetic decision making is 
subject to cognitive and cultural biases. To date, there appear to be a limited number of examples 
where aesthetic evaluation of images by computational means has been wholly successful. At one 
extreme lie simple generative systems whose underlying objective is to color the squares within 
a relatively small rectangular grid using only a limited number of colors. In this caSe reasonable 
metrics for identifying aesthetic qualities such as balance, symmetry, and pattern have been studied 
[9] [16]. At the other extreme lie specialized generative systems supporting the narrowly defined 
"styles" of individual artists. These systems are capable of yielding high quality aesthetic imagery 
i.e. fine art. Works by Cohen, Mohr, and Knowlton (see [4] and [10]) provide well publicized 
examples of fine art produced by such systems. Somewhere in between these two extremes lies a 
computational realm where aesthetic evaluation of imagery has also been successful, presumably 
due to the high level of mathematical content of the underlying imagery (see, for example, the 
work of Sprott [15]). Indeed, one might conjecture that any generative system whose primary 
objective is to visualize purely mathematical objects would be a good candidate for computational 
aesthetics. Systems that we feel merit consideration for inclusion in this category include those 
of Brill [1], Krawcyzk [11], Priebe [12], and Hemert [8]. General purpose generative systems like 
those of Rooke [18], Sims [14], Unemi [17], and the author [6] that are capable of generating a 
more diverse spectrum of imagery offer a stiffer challenge in this regard. Therefore they serve 88 

excellent test beds for proposed algorithms for measuring aesthetic fitness. A crucial difference in 
these systems is that they require searching for aesthetic images in spaces that are associated with 
rugged fitness landscapes, spaces where tens of thousands of aesthetically valuable images often lie 
cleverly concealed among tens of millions of aesthetically worthless images. Designing algorithms 
for assigning aesthetic fitness to imagery produced by such systems is proving to be a daunting 
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task. It is further complicated by the fact that these systems evolve imagery over time, forcing 
aesthetic measures not only to identify aesthetic images but to guide their evolution. 

In previous work, we have considered various computational aesthetic schemes. Our most suc
cessful scheme coevolved small sets of image ''probes'' in tandem with aesthetic images [6]. We also 
considered geometric methods for assessing image aesthetics that were based upon measurements 
derived from color-induced simplifications, or segmentations, of images [7]. The goal of this paper 
is to investigate yet another approach. It is inspired by a recently developed technique that was 
used to guide a sequence of aesthetic modifications that were made to a photorealistic image. 

This paper is organized as follows. In section two we review this new technique. In section 
three we explain how we incorporated its underlying theme into the fitness evaluation step of our 
generative system. In section four we discuss some of the results we obtained. In section five we 
give our conclusions. 

2. Image Analysis Based on Eye Tracking Data 

DeCarlo and Santella [3] describe an impressive technique for transforming a photograph into 
a stylized, abstract realization of its subject matter. Their non-photrealistic transformation is 
accomplished in several steps. First, a human subject wearing an eye-tracker is asked to study the 
photograph for a brief period of time (say thirty seconds) so that a number of gaze postions can be 
measured and recorded. The duration of the gaze at each gaze position is also recorded and used 
to define a sphere of influence for the gaze position. Second, the photograph is color segmented 
in order to decompose it into feature regions. Third, the gaze information is used to decide how 
to aggregate the feature regions so that regions within the spheres of influence are preserved and 
others are blurred. Fourth, a smoothing operator is applied to the aggregate image. Fifth, image 
processing techniques are used to highlight selected feature regions with bold black lines. The 
resulting non-photorealistic effect can be quite stunning. Figure 1 illustrates the effect DeCarlo 
and Santella are. able to achieve. From our point of view, the underlying premise of their technique 
is that the gaze information - gaze positions together with their spheres of influence - constitutes 
an aesthetic evaluation of the image. 

3. Gaze Patterns and Aesthetic Fitness Measures 

A generic description of the generative system we use to generate our abstract imagery can be 
found in [5]. Here, it will suffice to recall that our system uses the method of evolving expressions 
first introduced by Sims [14]. This method generates an image from an expression tree consisting 
of nodes that contain functions in two variables. To assign a color to each pixel, its coordinates 
are passed to the expression tree as inputs and the corresponding output is scaled to an integer 
between 1 and 450 that is then mapped to a color according to a color lookup table. In this paper 
the imagery that can be evolved is identical with the imagery that can be evolved by the generative 
system we described in [7]. What differs here are the algorithms used to determine an image's 
aesthetic fitness. 

Our objective is to make use of existing gaze data, which we think of as a set of predefined gaze 

86 



Figure 1: Sample before and after images illustrating DeCarlo and Santella's technique for creating 
abstractions of photographs ©2002 ACM, Inc. Reprinted by permission. 

positions and predefined spheres of influence. Our test gaze data set is a first-order approximation 
of the gaze pattern obtained from the photograph in Figure 1. For computational convenience, 
however, our "spheres" of influence will always be squares of influence. Formally, then, a gaze 
pattern consists of a sequence of vertices associated to spheres of influence and a sequence of side 
lengths for the spheres e.g. PI = (2, 8),P2 = (4,10), ... ,Pn = (16,24) and it = 8,h = 4, ... ,111 = 2. 

Whereas DeCarlo and Santella used an image to obtain a gaze pattern, we are attempting to use 
a gaze pattern to obtain an image, or to be more precise, use a gaze pattern to determine whether 
or not an image should be included in the pool of images that are allowed to breed new images. To 
implement our approach, we color segment a thumbnail (32 x 32 pixel) rendering of an image; This 
means we use an iterative process to aggregate pixels into regions in such a way that all the pixels 
comprising a region have similar color characteristics. Our algorithm begins by declaring each pixel 
to be a region. It then successively glues together, or merges, the two neighboring regions that are 
most similar in color until the desired number of regions is obtained - a bottom-up region-merging 
algorithm (see [7] for details). We want the regions that are formed to have a causal connection 
to the regions the human visual system considers when it examines an image. To achieve this, the 
color similarity decisions we need to make in order to decide how to merge regions must closely 
match the color similarity decisions the human visual system would make. It has been argued that 
for natural images, specifying digital color in terms of the three color components of Lab color 
space allows one to make such decisions [13]. Let v(R) be the Lab color vector associated with 
region R and let Ilv(R)1I denote its length. Given regions RI, R2, ... , R", our algorithm merges 
region Rt with Rj provided i ¥: j, Rt neighbors Rj, and IIv(Rt) - v(Rj ) II is minimal. The problem 
we must now confront is how to decide whether or not a color segmented image has feature regions 
compatible with the predefined spheres of influence. This requires some experimentation. 

A sphere of influence should help indicate where the image "interest" lies. One measure of 
interest is the color variation within the pixels that make up the sphere. Clearly, this value will be 
large if spheres contain only a few regions, those regions have an abundance of boundary pixels, and 
those region's color gradients at their region boundaries is severe. Observation suggests, however, 
that spheres of interest are often spheres of interest precisely because they contain many feature 
regions. Thus in order to find images where visual interest is maximized, we seek to maximize color 
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variation within the spheres of influence while simultaneously maximizing the number of feature 
regions that wind up in contact with the spheres of influence. To achieve these goals, let I be an 
image, and let F(J) be its aesthetic fitness. Let V(c,!) be the variance in color channel c calculated 
over all pixels lying within spheres of influence, and let H(!) be the number of regions containing 
pixels lying in one or more spheres of influence. Our first choice for a measure of aesthetic fitness 
is: 

FI (I) = H(!) + K L V(c, J), 
cEC 

where C is a subset of color channels and K is a constant. We can also consider pixel activity 
restricted to the boundaries of spheres of influence. Let 8V and 8H be functions analogous to V 
and I but with pixel calculations taken only over the edge pixels of the spheres of influence. This 
leads us to consider the aesthetic fitness measure: 

F2(J) = 8H(J) + K L 8V(c, J). 
cEC 

Finally, we define the function 8E(J) whose purpose is to measure how accurately spheres of 
influence correlate with feature boundaries. For a sphere of influence S, Let h(S) be the number of 
region transitions that occur at its horizontal edges, and let v( S) be the number of region transitions 
that occur at its vertical edges. We set e(S) = Ih(S) - v(S)1 provided this number does not exceed 
a balance threshold B, and zero otherwise. Setting 8E(J) = 2:8 e(S) leads to our final choice for 
an aesthetic fitness measure: 

F3(J) = 8E(I) + K L 8V(c, I). 
cEC 

It is important to note that in the above calculations, whenever a color component of a pixel is 
called for the value that is actually used is the color component extracted from the average color 
of the feature region that the pixel belongs to following color segmentation. 

4. Gaze Pattern Guided Image Evolution 

Our initial tests using the aesthetic fitness function H gave disappointing results. In most 
evolved images the upper half plane was one solid color and the lower half plane was filled with 
horizontal stripes. We concluded this was because (1) most of the gaze positions in our test 
data were located within a narrowly defined horizontal band in the lower half plane, and (2) we 
were overzealously color segmenting images. By switching to the aesthetic fitness function F2 in 
order to place more emphasis on sphere boundaries, and relaxing our segmentation parameters, 
we consistently evolved images similar to the one shown in Figure 2. For these images the feature 
regions are concentrated in the left half plane. This can be explained by the fact that for our test 
data most of the area spanned by the spheres of influence is concentrated there. One surprise is the 
style of these images, a style characterized by having one massive feature region with high contrast. 
At first we thought this might be due to anomalies associated with the L channel - the luminance 
channel - of Lab color space. However this style persisted even when we reverted to RGB color 
space. Since our aesthetic fitness measure rewards images having high contrast in one or more color 
channels while color segmentation constrains the number of (feature) regions that can be formed, 
this distinctive style arises as an artifact of the Genetic Algorithm. Images are able to exploit this 
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Figure 2: Left: An image appearing at generation #50. The spheres of influence are concentrated 
along the left hand strip. Right: An enlarged color segmented thumbnail of the image. The 
thumbnail has a color shift, an artifact that arose from averaging dark colors over the L channel in 
Lab color space. 

conflict between color channel contrast and region color similarity by evolving a maximal amount 
of color contrast within their largest regions. 

In an effort to increase the visual interest of our evolved imagery, we balanced the test data by 
increasing the sizes of the spheres of influence in the lower right hand quadrant. Figure 3 shows a 
sequence of images obtained between generations #120 and #=145 during a subsequent sample run. 
They illustrate the speed with which image evolution is taking place. 

Figure 4 shows images from a run using the aesthetic fitness function F3. We present them in 
order to reinforce the observation that during the course of nearly all our runs evolution appeared to 
evolve the most promising aesthetic specimens between generations #50 and #150. Soon thereafter 
"lethal" mutations tended to show up and the dominant images become degenerate ones, charac
terized by horizontal banding. Mathematical visual interest diverged from human visual interest 
at this point. 

5. Conclusions 

We have implemented a technique for automating the evaluation of the aesthetic fitness of 
computer generated imagery based on predefined gaze patterns. Our technique can successfully 
guide evolution from a "primordial soup" of images to an evolutionary niche where images possess 
a distinctive aesthetic style. Moreover, our technique imparts a pace to their evolution. The 
probability of success for our technique, as measured by the proportion of evolutionary runs where 
interesting images were obtained, is rather low. Our system generates abstract images. Most of our 
images have high frequency detail. Segmentation algorithms experience difficulty when confronted 
with such images. The underlying artificial genetics of our generative system cause mutations to 
yield a steady stream of degenerate images. Putting all these facts together, it becomes easy to 
see why, inevitably, a lethal mutation gives rise to a degenerate image that effectively overpowers 
the segmenter. It has been suggested [2] that one way to attack this problem is to filter genomes 
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Figure 3: In row order, evolution of the most aesthetically fit images between generations #120 
and #145 of a sample run. 

from populations by comparing them with genomes stored in a data bank of known undesirable 
genomes. The current obstacle to this approach is that in most evolutionary systems based on the 
Genetic Algorithm the "active" components of genomes are difficult to identify whence phenotype 
matchings based solely on genotype comparisons turn out to be either unpredictable or unreliable. 
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